枣庄高压喷雾除臭
活性炭废气净化器又名活性炭过滤器,其主要应用于有机废气的处理,活性炭具有很细小的孔--毛细管,并有的吸附能力,活性炭表面积很大且能与气体充分接触并被毛细管所吸附。利用活性炭吸附作用除去异味,从而达到净化空气的效果。活性炭箱主要是吸附器,内含穿孔板、活性炭吸附层等部件。本装置具有节省动力,操作维护方便等优点:本装置适用于家具、木业、五金建材、医药化工等行业的有机废气处理。
有机废气经收集后,在风机负压作用下进入活性炭吸附器。活性炭吸附是利用活性炭的多孔性,在吸引力的原理而开发的。由于固体表面上存在着未平衡饱和的分子力或化学键力,因此当此固体表面与气体接触时,就能吸引气体分子,使其浓集并保持在固体表面。这种现象就是吸附现象。本工艺所采用的活性炭吸附法就是利用固体表面的这种性质,当废气与表面的多孔性活性炭接触,废气中的污染物吸附在活性炭固体表面,从而与气体混合物分离,达到净化的目的。
曝气生物滤池分为上向流式和下向流式。下面以下向流式为例介绍其工作原理。如图所示,曝气生物滤池的主体可分为布水系统、布气系统、承托层、生物填料层、反冲洗系统等五个部分。池底设承托层,其上部则是滤料层(一般为粒径较小的粒状滤料)。在承托层设置曝气用的空气管和空气扩散装置,处理水集水管兼作反冲洗水管也设置在承托层内。
三、等离子光氧一体机工作原理:
归纳采用了等离子废气净化器和紫外光触媒除臭废气净化器两种设备的长处组合而成,利用等离子分化技能和UV紫外光解技能结合,对废气和臭气进行高协同净化处理:有机废气和恶臭气体进入集成设备后,通过UV紫外光束区时,被紫外光波高能高功率地照耀,瞬间发生光解反响;通过等离子体电场时,在纳秒级时间范围内,发生裂变分化反响;如此协同地发生一系光解和分化反响,通过多级净化后从而合格排放。
玻璃钢喷淋塔 废气处理
24、锅炉布袋除尘器安装时应该注意哪些?
锅炉布袋除尘器是锅炉烟气除尘中不可缺少的设备之一,锅炉布袋除尘器能够保持的除尘效率,不仅仅是锅炉布袋除尘器的质量,锅炉布袋除尘器的安装也是重要的,因此在安装时,我们应该注意一下几点
检查
安装锅炉布袋除尘器的时候,需要检查一下设备的各种配件是否,主机是否有损伤,连接件是否可靠,如有问题等待解决后在安装。锅炉布袋除尘器风机的运转有没有杂声或是不良的状况,如果有的话要把风机调试好在进行使用。
安装
a、锅炉布袋除尘器安装在室外的时候,除尘器安装上防雨罩或防雨棚。这样能够延长除尘器的使用寿命。锅炉布袋除尘器放置时,要放置到平整牢固的基础上,设备要接触到地面。
b、电磁脉冲阀输入端插入储气筒金属管,其输出端插入除尘器喷吹管,阀两端带有橡胶密封圈和固定螺帽,电磁脉冲阀就能可靠固定与密封。电器控制系统的工作原理和安装调试注意事项见电器控制系统使用说明书。
c、分水过滤减压阀安装时,使分水过滤减压阀所示箭头方向与压缩空气流动方向一致,减压阀的出口压力应调整为0.4~0.6MPa。要注意袋室结露情况是否存在,排灰系统是否。防止堵塞和腐蚀发生,积灰严重时会影响主机的生产。旋动脉冲旋钮,脉冲喷吹控制仪发出指令按顺序开启电磁脉冲阀,观察清灰动作是否正确。
锅炉布袋除尘器高温烟气的冷却方法
a.自然冷却,加长运送气体的管道的长度,管道与周围空气的对流与辐射散热效果而使气体冷却。多用于金属管道,为加长间隔能够用为s型,这种办法简略,冷却较弱,占用的空间较大。
b.用水冷却:分为两种办法,一种直接向高温烟气中喷水,冷却,可做为的喷雾冷却塔,冷却塔的断面风速通常为2-3.5米/秒,为了防止水雾进入布袋除尘器,能够使用温度控制系统调节水量。还有一种办法是使用冷却水管路,安设于运送气体的管道中,能防止水雾进入布袋除尘器及腐蚀的问题,这种办法冷却能力强,占用空间较小,可能有水雾带入布袋除尘器,使之受潮或腐蚀。
c.参混冷空气,把周围环境的空气吸入量,是指和高温烟气混合以降低温度,在使用捕集罩捕集高温烟气时,可一起吸入环境空气,这一种办法尽管简略,但使过滤气体的体积添加许多。
局部治理:双模式治理法
为了净化效果,我们设计了双模式治理法。
在焊烟产生源头设有外接吸风口,产生的焊烟会迅速通过高负压吸入净化设备内进行处理;在净化设备的一端配有捕风屏,将残余的焊烟吸入净化设备中,达到双重净化的目的,净化后气体直接排放到车间内,减少热损失。
备注:可迪尔生产的捕风屏,经研发设计,可捕捉逸散的焊烟。
6、活性炭吸附装置
吸附,能力强;能够同时处理多种混合废气;净化效率≥95%;RCO催化燃烧设备构造紧凑,占地面积小,维护管理简单,运转成本低廉;采用自动化控制运转设计,操作简易;全密闭型,室内外皆可使用。
吸附过程:由于固体表面上存在着未平衡和未饱和的分子引力或化学键力,因此当此固体表面与气体接触时,就能吸引气体分子,使其浓聚并保持在固体表面,此现象称为吸附。利用固体表面的吸附能 力,使废气与大表面的多孔性固体物质相接触,废气中的污染物被吸附在固体表面上,使其与气体混合物分离,达到净化的目的。