耦合器以光为媒介传输电信号。它对输入、输出电信号有良好的隔离作用,所以,它在各种电路中得到广泛的应用。它已成为种类多、用途广的光电器件之一。光耦合器一般由三部分组成:光的发射、光的接收及信号放大。输入的电信号驱动发光二极管(LED),使之发出一定波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出。这就完成了电—光—电的转换,从而起到输入、输出、隔离的作用。由于光耦合器输入输出间互相隔离,电信号传输具有单向性等特点,因而具有良好的电绝缘能力和抗干扰能力。所以,它在长线传输信息中作为终端隔离元件可以大大提高信噪比。在计算机数字通信及实时控制中作为信号隔离的接口器件,可以大大提高计算机工作的可靠性。
光电耦合器分为两种:一种为非线性光耦,另一种为线性光耦。非线性光耦的电流传输特性曲线是非线性的,这类光耦适合于开关信号的传输,不适合于传输模拟量。常用的4N系列光耦属于非线性光耦。
线性光耦的电流传输特性曲线接近直线,并且小信号时性能较好,能以线性特性进行隔离控制。常用的线性光耦是PC817A—C系列。
三、隔离特性
1.入出间隔离电压Vio(Isolation Voltage)
光耦合器输入端和输出端之间绝缘耐压值。
2.入出间隔离电容Cio(Isolation Capacitance):
光耦合器件输入端和输出端之间的电容值
3.入出间隔离电阻Rio:(Isolation Resistance)
半导体光耦合器输入端和输出端之间的绝缘电阻值。
以下为光电耦合器的常用参数:
反向电流IR:在被测管两端加规定反向工作电压VR时,二极管中流过的电流。
反向击穿电压VBR:被测管通过的反向电流IR为规定值时,在两极间所产生的电压降。
正向压降VF:二极管通过的正向电流为规定值时,正负极之间所产生的电压降。
正向电流IF:在被测管两端加一定的正向电压时二极管中流过的电流。结电容CJ:在规定偏压下,被测管两端的电容值。
反向击穿电压V(BR)CEO:发光二极管开路,集电极电流IC为规定值,集电极与发射集间的电压降。
输出饱和压降VCE(sat):发光二极管工作电流IF和集电极电流IC为规定值时,并保持IC/IF≤CTRmin时(CTRmin在被测管技术条件中规定)集电极与发射极之间的电压降。
反向截止电流ICEO:发光二极管开路,集电极至发射极间的电压为规定值时,流过集电极的电流为反向截止电流。
电流传输比CTR:输出管的工作电压为规定值时,输出电流和发光二极管正向电流之比为电流传输比CTR。
脉冲上升时间tr,下降时间tf:光耦合器在规定工作条件下,发光二极管输入规定电流IFP的脉冲波,输出端管则输出相应的脉冲波,从输出脉冲幅度的10%到90%,所需时间为脉冲上升时间tr。从输出脉冲后沿幅度的90%到10%,所需时间为脉冲下降时间tf。
传输延迟时间tPHL,tPLH:从输入脉冲幅度的50%到输出脉冲电平下降到1.5V时所需时间为传输延迟时间tPHL。从输入脉冲后沿幅度的50%到输出脉冲电平上升到1.5V时所需时间为传输延迟时间tPLH。
入出间隔离电容CIO:光耦合器件输入端和输出端之间的电容值。
入出间隔离电阻RIO:半导体光耦合器输入端和输出端之间的绝缘电阻值。
入出间隔离电压VIO:光耦合器输入端和输出端之间绝缘耐压值.
CT Micro's 采用双模塑共面 (DMC-Isolator ® ) 封装技术,该技术采用特的封装材料和工艺配方设计,可提供的可靠性和隔离性能的光耦合器。
二色成型共面(DMC-隔离®)优势。
的隔离性能
在升高的温度下具有一致的传输特性性能
固定内部隔离间隙(通过绝缘的厚度)。
无铅且符合 RoHS。
CT Micro 的主要目标是朝着零缺陷迈进。为了实现这一目标,CT Micro 对从设计、制造到测试的质量进行了严格的控制。由于我们的旅程从设计开始,因此在此阶段使用 DFMEA 来理解和识别设计,以便尽早进行改进。在制造过程中,使用统计过程控制(SPC)来监控每个过程,以严密的 UCL 和 LCL 来保持过程控制的严密。这仅允许很小的偏差,确保良好和稳定的过程。在我们的测试中使用了多个测试,以确保测试程序将有效地筛选所有缺陷。保持我们对质量CT 的承诺Micro 会定期执行实时可靠性 (RTR),以确保产品符合要求的质量标准。
CT Micro 将继续致力于打造满足并客户对质量、可靠性和服务期望的产品。
本公司,是一家以主营贴片光耦,光耦合器,CT1018,CT1019企业。深圳市凯集电子有限公司,其前身成立于2008年,是一家从事高新技术电子元器件的生产和代理销售型企业,公司地址位于改革开放的前沿阵地深圳市,汇集各种资源,面向国内外客户,着力提供的销售和技术服务。产品拥有UL,CUL,VDE,TUV,CCC,CQC,SEMKO,PSE,KTL,ASTA等各国认证,并且符合ROHS 环保指令和REACH法规的要求。广泛应用于:手机、液晶电视、智能穿戴、无人机、新能源汽车、新能源逆变、充电桩、电源驱动、BMS、电源、手表、医