字符识别方法目前主要有基于模板匹配算法和基于人工神经网络算法。基于模板匹配算法将分割后的字符二值化,并将其尺寸大小缩放为字符数据库中模板的大小,然后与所有的模板进行匹配,后选佳匹配作为结果。基于人工神经元网络的算法有两种:一种是先对待识别字符进行特征提取,然后用所获得特征来训练神经网络分配器;另一种方法是直接把待处理图像输入网络,由网络自动实现特征提取直至识别出结果。
自然光路线是指白天利用自然光线,夜间采用辅助照明光源,用彩色摄像机采集车辆真彩色图像,用彩色图像分析处理方法识别车牌。自然光真彩色识别技术路线,与人眼感光习惯一致,并且,真彩色图像能够反映车辆及其周围环境真实的图像信息,不仅可以用来识别车牌照,而且可以用来识别车牌照颜色、车流量、车型、车颜色等车辆特征。用一个摄像机采集的图像,同时实现所有前端基本视频信息采集、识别和人工辅助图像取证判别,可以前瞻性的为未来的智能交通系统工程预留接口。
红外光路线是指利用车牌反光和红外光的光学特性,用红外摄像机采集车辆灰度图像,由于红外特性,车辆图像上几乎只能看见车牌,然后用黑白图像处理方法识别车牌。950nm的红外照明装置可抓拍到很好的反光车牌照图像。因红外光是不可见光,它不会对驾驶员产生视觉影响。另外,红外照明装置提供的是不变的光,所抓拍的图像都是一样的,不论是在一天中明亮的时候,还是在一天中暗的时候。的例外是在白天,有时会看到一些牌照周围的细节,这是因为晴朗天气时太阳光的外光波的影响。采用红外灯的缺点就是所捕获的车牌照图像不是彩色的,不能获取整车图像,并且严重依赖车牌反光材料。
将的牌照信息输入系统,系统自动地识读经过车辆的牌照并查询内部数据库。对于需要自动放行的车辆系统驱动电子门或栏杆机让其通过,对于其它车辆系统会给出警示,由值勤人员处理。可用于特殊单位(如军事管理区、保密单位、保护单位等)、路桥收费卡口、住宅区等。
交通监管部门每天都要处理大量的违章车辆图片,一般由人工辨识车牌号码再输入管理系统,这种方式工作量大、容易疲劳误判。采用自动识别可以减少工作强度能够大幅度提高处理速度和效率。这种功能可用于电子警察系统、道路监控系统等。
车牌识别系统在停车场中能够起到很大的作用,有助于推动停车场收入,特别是对丁一些机动型用户来说,能够随时释放山停车位,加大停车的梳动量。基丁停车场的车牌识别系统是一个基于视频监控和门禁系统合二为一的平台。该平台不仅允许终端用户查看视频信息,也可以让他们拉制摄像头,让系统抓拍到车牌信息后方可进入停车,停车费用明细可Web访问获取信息。