智能车牌识别一体机工程识别数据:人脸识别需要积累采集到的大量人脸图像相关的数据,用来验证算法,不断提高识别准确性,这些数据诸如A Neural Network Face Recognition Assignment(神经网络人脸识别数据)、orl人脸数据库、麻省理工学院生物和计算学习中心人脸识别数据库、埃塞克斯大学计算机与电子工程学院人脸识别数据等。人脸识别配合程度:现有的人脸识别系统在用户配合、采集条件比较理想的情况下可以取得令人满意的结果。但是,在用户不配合、采集条件不理想的情况下,现有系统的识别率将陡然下降。比如,人脸比对时,与系统中存储的人脸有出入,例如剃了胡子、换了发型、多了眼镜、变了表情都有可能引起比对失败。广州智能车牌识别一体机工程
几乎所有高新科技都可促进其发展,尤其是信息时代的来临,更为该发展提供契机。安防工程的技术要点包括入侵报警系统、视频监控系统、出入口控制系统以及电子巡查系统四
目前道路交通压力剧增,如何缓解车辆过多的压力是智慧交通研究中心的关键一环。而智慧交通是旨在建立起一种大范围、、实时、准确、的交通运输管理系统,进而成为可以有效地利用现有交通设施、减少交通负荷和环境污染、交通安全、提高运输效率的重要手段。
移动端车牌识别实现的过程简单为以下几个部分:
图像采集:通过智能手机摄像头拍摄车牌图像。
预处理:灰度化、二值化、边缘增强、噪声过滤、自动白平衡、自动曝光以及伽马校正、对比度调整等。
车牌定位:在经过图像预处理之后的灰度图像上进行行列扫描,确定车牌区域,车牌切斜校正。
字符分割:在图像中定位出车牌区域后,通过灰度化、二值化等处理,定位字符区域,然后根据字符尺寸特征进行字符分割。
字符识别:对分割后的字符进行缩放、特征提取,与字符数据库模板中的标准字符表达形式进行匹配判别。
结果输出:将车牌识别的结果以文本格式输出。