自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定牌照区域是整个识别过程的关键。对采集到的视频图像进行大范围相关搜索,找到符合汽车牌照特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,后选定一个佳的区域作为牌照区域,并将其从图象中分割出来。
完成牌照区域的定位后,再将牌照区域分割成单个字符,然后进行识别。字符分割一般采用垂直投影法。由于字符在垂直方向上的投影必然在字符间或字符内的间隙处取得局部小值的附近,并且这个位置应满足牌照的字符书写格式、字符、尺寸限制和一些其他条件。利用垂直投影法对复杂环境下的汽车图像中的字符分割有较好的效果。
字符识别方法目前主要有基于模板匹配算法和基于人工神经网络算法。基于模板匹配算法将分割后的字符二值化,并将其尺寸大小缩放为字符数据库中模板的大小,然后与所有的模板进行匹配,后选佳匹配作为结果。基于人工神经元网络的算法有两种:一种是先对待识别字符进行特征提取,然后用所获得特征来训练神经网络分配器;另一种方法是直接把待处理图像输入网络,由网络自动实现特征提取直至识别出结果。
当车辆接近出入口的时候,车辆检测器会自动感应到车辆的到来,然后触发车牌识别一体机进行图像抓拍,然后将抓拍的图像发送到数据处理服务器,安装在数据服务器上的车牌识别软件对图像进行处理,定位出牌照位置,再将车牌中的字符分割出来进行识别,然后组成车牌号码保存下来,图像和车牌号码均保存在数据处理服务器上。
对于纳入“黑名单”的车辆,例如:被通缉或挂失的车辆、欠交费车辆、未年检车辆、肇事逃逸及违章车辆等,只需将其车牌号码输入到应用系统中,车牌识别设备安装于的路口、卡口或由执法人员随时携带按需要放置,系统将识读所有通过车辆的牌照号码并与系统中的“黑名单”比对,一旦发现车辆立刻发出报警信息。系统可以全天不间断工作、不会疲劳、错误率极低;可以适应高速行驶的车辆;可以在车辆行使过程中完成任务不影响正常交通;整个监视过程中司机也不会觉察、保密性高。应用这种系统将地提高执法效率。
将车牌识别设备安装于出入口,记录车辆的牌照号码、出入时间,并与自动门、栏杆机的控制设备结合,实现车辆的自动管理。应用于停车场可以实现自动计时收费,也可以自动计算可用车位数量并给出提示,实现停车收费自动管理节省人力、提率。应用于智能小区可以自动判别驶入车辆是否属于本小区,对非内部车辆实现自动计时收费。在一些单位这种应用还可以同车辆调度系统相结合,自动地、客观地记录本单位车辆的出车情况。