SiC PiN 的击穿电压很高,开关速度很快,重量很轻,并且体积很小,它在 3KV以上的整流器应用领域更加具有优势。2000年Cree公司研制出19.5 KV的台面PiN二极管,同一时期日本的 Sugawara 研究室也研究出了 12 KV 的台面 PiN 二极管。2005 年 Cree 公司报道了 10 KV、3.75 V、50 A 的 SiC PiN 二极管,其 10 KV/20 A PiN二极管系列的合格率已经达到 40%。
国内的SiC功率器件研究方面因为受到 SiC 单晶材料和外延设备的限制起步比较晚,但是却紧紧跟踪国外碳化硅器件的发展形势。国家十分重视碳化硅材料及其器件的研究, 在国家的大力支持下经已经初步形成了研究 SiC 晶体生长、SiC器件设计和制造的队伍。电子科技大学致力于器件结构设计方面,在新结构、器件结终端和器件击穿机理方面做了很多的工作,并且提出宽禁带半导体器件优值理论和宽禁带半导体功率双极型晶体管特性理论。
功率二极管是功率半导体器件的重要组成部分,主要包括 PiN 二极管,肖特基势垒二极管和结势垒控制肖特基二极管。本章主要介绍了肖特基势垒的形成及其主要电流输运机理。并详细介绍了肖特基二极管和结势垒控制肖特基二极管的电学特性及其工作原理,为后两章对 4H-SiC JBS 器件电学特性的仿真研究奠定了理论基础。
金属与半导体接触时,载流子流经肖特基势垒形成的电流主要有四种输运途径。这四种输运方式为:
1、N 型 4H-SiC 半导体导带中的载流子电子越过势垒顶部热发射到金属;
2、N 型 4H-SiC 半导体导带中的载流子电子以量子力学隧穿效应进入金属;
3、空间电荷区中空穴和电子的复合;
4、4H-SiC 半导体与金属由于空穴注入效应导致的的中性区复合。
碳化硅具有载流子饱和速度高和热导率大的特点,应用开关频率可达到1MHz,在高频应用中优势明显,其中碳化硅肖特基二极管(SiC JBS)耐压可以达到6000V以上。相对应的,硅材料的禁带宽度较低,在较低的温度下硅器件本征载流子浓度较高,而高的漏电流会造成热击穿,这限制了器件在高温环境和大功率耗散条件下工作。
肖特基二极管是用于功率整流器应用的佳半导体器件,因为这些器件具有高电流密度和低正向电压降,与普通PN结器件的特性不同。这些优点有助于降低热量水平,减少设计中包含的散热器,并提高电子系统的整体效率。