SBD的主要优点包括两个方面:
1)由于肖特基势垒高度低于PN结势垒高度,故其正向导通门限电压和正向压降都比PN结二极管低(约低0.2V)。
2)由于SBD是一种多数载流子导电器件,不存在少数载流子寿命和反向恢复问题。SBD的反向恢复时间只是肖特基势垒电容的充、放电时间,完全不同于PN结二极管的反向恢复时间。由于SBD的反向恢复电荷非常少,故开关速度非常快,开关损耗也特别小,尤其适合于高频应用。
但是,由于SBD的反向势垒较薄,并且在其表面极易发生击穿,所以反向击穿电压比较低。由于SBD比PN结二极管更容易受热击穿,反向漏电流比PN结二极管大。
SBD具有开关频率高和正向压降低等优点,但其反向击穿电压比较低,大多不60V,高仅约100V,以致于限制了其应用范围。像在开关电源(SMPS)和功率因数校正(PFC)电路中功率开关器件的续流二极管、变压器次级用100V以上的高频整流二极管、RCD缓冲器电路中用600V~1.2kV的高速二极管以及PFC升压用600V二极管等,只有使用快速恢复外延二极管(FRED)和超快速恢复二极管(UFRD)。UFRD的反向恢复时间Trr也在20ns以上,根本不能满足像空间站等领域用1MHz~3MHz的SMPS需要。即使是硬开关为100kHz的SMPS,由于UFRD的导通损耗和开关损耗均较大,壳温很高,需用较大的散热器,从而使SMPS体积和重量增加,不符合小型化和轻薄化的发展趋势。因此,发展100V以上的高压SBD,一直是人们研究的课题和关注的热点。近几年,SBD已取得了突破性的进展,150V和200V的高压SBD已经上市,使用新型材料制作的超过1kV的SBD也研制成功,从而为其应用注入了新的生机与活力。
肖特基二极管是贵金属(金、银、铝、铂等)A为正极,以N型半导体B为负极,利用二者接触面上形成的势垒具有整流特性而制成的金属-半导体器件。因为N型半导体中存在着大量的电子,贵金属中仅有极少量的自由电子,所以电子便从浓度高的B中向浓度低的A中扩散。显然,金属A中没有空穴,也就不存在空穴自A向B的扩散运动。随着电子不断从B扩散到A,B表面电子浓度逐渐降低,表面电中性被破坏,于是就形成势垒,其电场方向为B→A。但在该电场作用之下,A中的电子也会产生从A→B的漂移运动,从而消弱了由于扩散运动而形成的电场。当建立起一定宽度的空间电荷区后,电场引起的电子漂移运动和浓度不同引起的电子扩散运动达到相对的平衡,便形成了肖特基势垒。
肖特基二极管分为有引线和表面安装(贴片式)两种封装形式。的肖特基二极管通常作为高频大电流整流二极管、续流二极管或保护二极管使用。它有单管式和对管(双二极管)式两种封装形式。肖特基对管又有共阴(两管的负极相连)、共阳(两管的正极相连)和串联(一只二极管的正极接另一只二极管的负极)三种管脚引出方式。肖特基二极管有单管型、双管型和三管型等多种封装形式,有A~19种管脚引出方式。
肖特基二极管,也被称为肖特基势垒二极管或热载流子二极管,是一种利用金属与半导体接触形成的具有整流特性的器件。与传统的PN结二极管相比,肖特基二极管具有更低的正向压降和更快的开关速度,使其在高频、低功耗领域具有广泛的应用前景。
肖特基二极管在PCB电路设计与SMT贴片生产制造中具有以下优势:
提高电路效率:低正向压降有助于降低电路功耗,提高电路效率。
简化电路设计:快开关速度使得电路设计更为简化,减少了电路中的元件数量和复杂性。
提高可靠性:耐高温性能使得肖特基二极管在恶劣环境下仍能稳定工作,提高了电路的可靠性。
肖特基二极管是一种半导体电子器件,由一个金属和一个半导体P型材料组成。与普通二极管不同,它的正向压降较小,反向漏电流极低。它通常用于高频电路、开关电源、电压稳压器等电子设备中。
肖特基二极管是由PN结和金属接触界面组成的特殊二极管,具有以下特点:
正向电压下具有极低的正向压降(仅为0.2V左右),因此具有快速开关特性,被广泛应用于高频电路中。
反向电流大,但有稳定的温度特性和阻挡电容特性,适用于稳压、限流以及检测等领域。
耐辐射能力强,是航空航天领域常用器件之一。
LOW VF肖特基二极管在微波通信电路中用作整流二极管和小信号检测二极管。它常用于通信电源、变频器等。一个典型的应用是,在双极晶体管BJT的开关电路中,LOW VF肖特基二极管连接到BJT箝位电路,使得晶体管在导通状态时实际上处于非常关断的状态,从而提高晶体管的开关速度。该方法适用于典型数字集成电路的TTL内部电路,如74LS、74ALS和74AS。