锂离子电池由于电压高、比能量大、循环寿命长、安全性能好等优点而广泛应用于电动汽车、手机及笔记本中,然而,随着锂离子电池的大量应用,废旧电池的回收变得十分重要。电池回收不仅节约了原料,更重要的是能够减少对环境的污染。
废锂电池、锂离子电池的再生回收再利用有广阔的市场发展前景。锂离子正负极片拆解破碎设备将原料用星型破碎刀片等多种刀片对原料进行撕碎破碎处理,由高速摩擦气流分选设备进行分离处理,并有脉冲除尘、碱喷淋,水喷淋设施在锂电池对分离过程中及后续过程中产生的粉尘收集。形成电池全生命周期绿色、高质的闭路循环回收再利用系统。
锂电池的主要构成材料包括电解液、隔膜材料、正负极材料等。锂电池当中的正、负极材料尤其重要,随着我国经济的快速发展,电子数码领域与新能源汽车领域对锂电池新材料需求的不断增加,这都将为锂电池材料带来新机遇。也为退役的报废锂电池正负极资源回收带来商机。
锂电池负极材料主要影响锂电池的效率、循环性能等。按锂离子电池成本比例,负极材料占比锂电池总成本的25%~28%。随着技术的进步,目前的锂离子电池负极材料已经从单一的人造石墨发展到了天然石墨、中间相碳微球、人造石墨为主,软碳/硬碳、无定形碳、钛酸锂、硅碳合金等多种负极材料共存的局面。
锂电池正负极材料成分,锂电池一般是由正极材料、负极材料、隔膜、电解质、电芯制造与电池封装。正极材料一直是锂离子电池核心,它的选择直接决定了电池性能的高低。负极材料,是电池在充电过程中,锂离子和电子的载体,起着能量的储存与释放的作用。在锂电池成本中,负极材料约占了5%-15%,是锂离子电池的重要原材料之一。正极材料的安全性,能量密度和功率密度是当前不同车型对锂电池类型做出取舍的基本依据。
锂电池负极材料主要分为碳基材料和非碳基材料。 碳基材料包括天然石墨负极、人造石墨负极、中间相碳微球(MCMB) 、软碳(如焦炭) 负极、硬碳负极、碳纳米管、石墨烯、碳纤维等。 非碳基材料主要分为硅基及其复合材料、氮化物负极、锡基材料、钛酸锂、合金材料等。