由此构成的蛋白多糖聚合体曲折盘绕,形成多微孔的筛状结构,称为 分子筛。分子筛只允许小于其微 分子筛孔的物质通过,对大于其微孔的大分子物质、细菌等则具有屏障作用。使基质成为限制细菌等有害物质扩散的防御屏障。溶血性链球菌和癌细胞等能产生透明质酸酶,分解蛋白多糖,破坏基质结构,得以扩散。蛋白多糖聚合体上还结合着许多亲水基团,能结合大量水分子,形成细胞外“储水库”。
有水热合成、水热转化和离子交换等法:
① 水热合成法 用于制取纯度较高的产品,以及合成自然界中不存在的分子筛。将含硅化合物(水 分子筛玻璃、硅溶胶等)、含铝化合物(水合氧化铝、铝盐等)、碱(氢氧化钠、氢氧化钾等)和水按适当比例混合,在热压釜中加热一定时间,即析出分子筛晶体。合成过程可用下式表示:
工业生产流程中一般先合成Na-分子筛,如13X型与10X型分子筛的合成。在水热合成过程中添加某些添加剂可以改变终产品的结构,如加入季胺盐可得到ZSM-5型分子筛。
② 水热转化法 在过量碱存在时,使固态铝硅酸盐水热转化成分子筛。所用原料有高岭土、膨润土、硅藻土等,也可用合成的硅铝凝胶颗粒。此法成本低,但产品纯度不及水热合成法。
离子交换法 通常在水溶液中将Na-分子筛转变为含有所需阳离子的分子筛,通式如下:
式中 Z-表示阴离子骨架,Me+表示需交换的阳离子,例如NH嬃、Ca2+、Mg2+、Zn2+等,原料通常为 中空玻璃分子筛氯化物、硫酸盐、硝酸盐。溶液中不同性质的阳离子交换到分子筛上的难易程度不同,称为分子筛对阳离子的选择顺序,例如:13X型分子筛的选择顺序为Ag+、Cu2+、H+、Ba2+、Au3+、Th4+、Sr2+、Hg2+、Cd2+、Zn2+、Ni2+、Ca2+、Co2+、NH嬃、K+、Au2+、Na+、Mg2+、Li+。常用下列参数表示交换结果:交换度,即交换下来的Na+量占分子筛中原有Na+量的百分数;交换容量,为每100克分子筛中交换的阳离子毫克当量数;交换效率,表示溶液中阳离子交换到分子筛上的质量百分数。为了制取合适的分子筛催化剂,有时尚需将交换所得产物与其他组分调配,这些组分可能是其他催化活性组分、助催化剂、稀释剂或粘合剂等,调配好的物料经成型即可进行催化剂的活化。
长期以来,国际分子筛厂商凭借在分子筛研发、生产和应用技术以及资金优势,通过兼并重组,逐渐形成了对分子筛行业的寡头垄断,主导着分子筛的市场,攫取高额利润。
我国分子筛行业起步较晚,一直扮演追赶者角色。20世纪50、60年代,我国开始了分子筛研究,合成了A型、X型、Y型等分子筛,开始进行工业生产,随后我国陆续在上海、大连、河南等地建厂,主要用于生产分子筛吸附剂和脱水脱氧用分子筛。20世纪80年代,金陵石化、吉林大学、中科院大连化学物理研究所等单位开始研发和工业化生产分子筛催化剂。
在工业制氧和干燥领域:近年来,分子筛吸附剂行业在工业制氧和干燥领域的技术发展主要在水热合成的主流技术路线基础上进行技术创新和工艺优化,不断推出更节能、生产成本更低的产品来保持市场竞争力。