供应商 | 上海联轧实业有限公司 店铺 |
---|---|
认证 | |
报价 | 面议 |
关键词 | 双相钢厂家,上海双相钢,双相钢用途,山西双相钢 |
手机号 | 13818812296 |
总监 | 胡荣强联系时请一定说明在黄页88网看到 |
所在地 | 联水路168号3号楼308 |
更新时间 | 2025-01-01 03:51:31 |
用途
双相不锈钢的应用日益广泛,用于炼油、化肥、造纸、石油、化工等耐海水耐高温浓硝酸等热交换器和冷淋器及器件。
双相不锈钢具有奥氏体和铁素体两相显微结构。
双相不锈钢的特性
01-高强度
双相不锈钢的强度大约是常规奥氏体或铁素体强度的2倍。
02-良好的韧性和延展性
尽管双相不锈钢强度高,但它们表现出良好的塑性和韧性。双相不锈钢的韧性和延展性明显优于铁素体不锈钢和碳钢,即使在很低的温度如-40℃/F下仍保持良好的韧性。
03-耐腐蚀性
不锈钢的耐腐蚀性主要取决于其化学成分。在大多数应用环境中,双相不锈钢都显示出较高的耐蚀性能,这是由于它们铬含量高,在氧化性酸中很有利,并且含有足够量的钼和镍,能耐中等还原性酸介质的腐蚀。
04-物理性能
介于奥氏体不锈钢和铁素体不锈钢之间,但更接近于铁素体不锈钢和碳钢。
不锈钢钢种很多,性能各异,它在发展过程中逐步形成了几大类。
按组织结构分,分为马氏不锈钢(包括沉淀硬化不锈钢)、铁素体不锈钢、奥氏体不锈钢和奥氏体加铁素体双相不锈钢等四大类;
按钢中的主要化学成分或钢中的一些特征元素来分类,分为铬不锈钢、铬镍不锈钢、铬镍钼不锈钢以及低碳不锈钢、高钼不锈钢、高纯不锈钢等;
按钢的性能特点和用途分类,分为耐硝酸不锈钢、耐硫酸不锈钢、耐点蚀不锈钢、耐应力腐蚀不锈钢、高强不锈钢等;
按钢的功能特点分类,分为低温不锈钢、无磁不锈钢、易切削不锈钢、超塑性不锈钢等。常用的分类方法是按钢的组织结构特点和钢的化学成分特点以及两者相结合的方法分类。一般分为马氏体不锈钢、铁素体不锈钢、奥氏体不锈钢、双相不锈钢和沉淀硬化型不锈钢等,或分为铬不锈钢和镍不锈钢两大类。
双相不锈钢具有良好的焊接性能,与铁素体不锈钢及奥氏体不锈钢相比,它既不像铁素体不锈钢的焊接热影响区,由于晶粒严重粗化而使塑韧性大幅降低,也不像奥氏体不锈钢那样,对焊接热裂纹比较敏感。
双相不锈钢由于其特殊的优点,广泛应用于石油化工设备、海水与废水处理设备、输油输气管线、造纸机械等工业领域,近些年来也被研究用于桥梁承重结构领域,具有很好的发展前景。
影响双相不锈钢焊接质量的因素主要体现在以下几方面:
含N量影响
Gómez de Salazar JM等人研究了保护气体中 N2的不同含量对双相不锈钢性能的影响。结果表明,随着混合气体中 N2分压 PN2的增加,焊缝中氮的质量分数ω(N)开始迅速增加,然后变化很小,焊缝中的铁素体相含量φ(α)随ω(N)增加呈线性下降,但φ(α)对抗拉强度和伸长率的影响与ω(N)的影响刚好相反。同样的铁素体相含量φ(α),母材的抗拉强度和伸长率均焊缝。这是由于显微组织的不同所造成的。双相不锈钢焊缝金属中含 N 量提高后可以改善接头的冲击韧性,这是由于增加了焊缝金属中的γ相含量,以及减少了Cr2N 的析出。
热输入影响
与焊缝区不同,焊接时热影响区的ω(N)是不会发生变化的,它就是母材的ω(N),所以此时影响组织和性能的主要因素是焊接时的热输入。根据文献 ,焊接时应选择合适的线能量。焊接时如果热输入太大,焊缝热影响区范围增大,金相组织也趋于晶粒粗大、紊乱,造成脆化,主要表现为焊接接头的塑性指标下降。如焊接热输入太小,造成淬硬组织并易产生裂纹,对HAZ的冲击韧性同样不利。此外,凡影响冷却速度的因素都会影响到 HAZ 的冲击韧性,如板厚、接头形式等。
σ相脆化
国外文献介绍了再热引起的双相不锈钢及其焊缝金属的σ相脆化问题。母材和焊缝金属的再热过程中,先由α相形成细小的二次奥氏体γ*,然后析出σ相。结果表明,脆性开裂都发生于σ相以及基体与σ相的界面处,对母材断口观察表明,在σ相周围区域内都为韧窝,由于α相区宽,大量生成的σ相才会使韧性降低,然而在焊缝中α相区是细小的,断口仍表现为脆性断裂,只要少量的σ相生成就足以引起焊缝金属韧性的降低,因此,焊缝金属中的σ相脆化倾向比母材要大得多。
氢致裂纹
双相不锈钢焊接接头的氢脆通常发生于α相,且氢脆的敏感性随焊接时峰值温度的升高而增加。其微观组织的变化为:峰值温度增加,γ相含量减少,α相含量增加,同时由α相边界和内部析出的Cr2N 量增加,故极易发生氢脆。
应力腐蚀开裂
母材和焊缝金属中的裂纹都起始于α/γ界面的α相一侧,并在α相内扩展。奥氏体(γ)由于其固有的低氢脆敏感性,因此,可起到阻挡裂纹扩展的作用。由于DSS 中含有一定量的奥氏体,所以其应力腐蚀开裂倾向性较小。
点蚀问题
耐点蚀是双相不锈钢的一个重要特性,与其化学成分和微观组织有着密切关系。点蚀一般产生于α/γ界面,因此被认为是产生于γ相和α相之间的γ*相。这意味着γ*相中的含Cr量低于γ相。γ*相与γ相的成分不同,是由于γ* 相中 的Cr 和Mo含量低于初始γ相中的Cr、Mo含量。进一步研究表明,含N量较低的钢,其点蚀电位对冷却速度较为敏感。因此,在焊接含 N 量较低的双相不锈钢时,对冷却速度的控制要求更加严格。在双相不锈钢焊接过程中,合理控制焊接线能量是获得双相不锈钢接头的关键。线能量过小,焊缝金属及热影响区的冷却速度过快,奥氏体来不及析出,从而使组织中的铁素体相含量增多;如线能量过大,尽管组织中能形成足量的奥氏体,但也会引起热影响区内的铁素体晶粒长大以及σ相等有害相的析出。一般情况下,焊条电弧焊(Shieded Metal Arc Welding,SMAW)、钨极氩弧焊(Gas Tungsten Arc Welding,GTAW)、药芯焊丝电弧焊(Flux-Cored WireArc Welding,FCAW)和等离子弧焊(Plasma Arc Welding,PAW)等焊接方法均可用于双相不锈钢的焊接,且在焊般不需要采取预热措施,焊后也不需进行热处理。
关键词:双相钢厂家,上海双相钢,双相钢用途,山西双相钢