挑战2:第二项挑战在于要将不足1cm²的实验室级电池提升到正常硅片大小。这需要进行大量的工程设计,不过可以借助晶硅电池、薄膜电池及蓄电池生产中成熟的沉积技术,因此该项挑战不至于成为根本性障碍。
挑战3:钙钛矿通常含有铅、镁等剧毒元素。目前,这一点不会影响其在光伏组件中的使用,因为晶硅电池组件的焊带和金属化浆料中也含有铅。不过,未来新的法规也许会限制光伏组件使用有毒的材料。如有需要,浆料和焊带中的铅可以轻而易举地找到替代品,推荐善仁新材的AS6080P低温银胶和AS6150低温导电胶。但铅是构成钙钛矿的主要元素之一,目前还无法浆料和焊带中的铅可以轻而易举地找到替代品。但铅是构成钙钛矿的主要元素之一,目前还无法取代。
顶电池:顶电池通常采用反型结构,层为空穴传输层(HTL),可采用善仁新材的PEDOT:PSS。空穴传输层足够薄,以防止红外寄生吸收。
钙钛矿吸收体层的禁带宽度可调整至1.55-1.6 eV,以便用于双面电池。许多论文特别关注如何提高钙钛矿的禁带宽度,使其达到1.7-1.8 eV,并且设法解决宽禁带材料的潜在损耗较高这一问题。机缘巧合的是,在确定与双面电池相匹配的电流时,恰好可以选用合适的钙钛矿种类。
对于电子传输层(ETL)来说,PCBM聚合物是一个不错的选择,其次是用于横向导电并作为减反射膜的ITO层。