钕铁硼磁铁的除垢防垢工作原理
水通过钕铁硼高强磁化处理后,水分子键同时发生角度和长度的变形,氢键角从105度减小到103度左右,使水的物理化学性质发生系列变化,水的活性和溶解度大大提高,水中的碳酸钙在蒸煮过程中分解生成较低松软的碳酸氢钙,不易在壁上积存,极易被水带走。另外水的聚合度提高,被溶解的固态物质成为更细的颗粒,粒子细化后,两颗离子间的距离较小,不易凝结在壁上,从而达到除垢的效果。
磁制冷的基本原理
磁制冷方式是一种以磁性材料为工质的制冷技术,其基本原理是借助磁制冷材料的可逆磁热效应,又称磁卡效应,即磁制冷材料等温磁化时向外界放出热量,而绝热退磁时温度降低因而可从外界吸取热量,达到制冷目的。物质由原子构成,原子由屯子和原子核构成,电子有自旋磁矩还有轨道磁矩,这使得有些物质的原子或离子带有磁矩。顺磁性材料的离子或原子磁矩在无外场时是杂乱无章的,加外磁场后,原子的磁矩沿外场取向排列,使磁矩有序化,从而减少材料的磁嫡,会向外排出热盘,而一旦去掉外磁场,材料系统的磁有序减小,磁嫡增大,因而会从外界吸取热量。如果把这样两个绝热去磁引起的吸热和绝热磁化引起的放热过程用一个循环连接起来,就可使得磁性材料不断地从一端吸热而在另一端放热,从而达到制冷的目的,这就是顺磁盐材料绝热去磁在低温区获得磁制冷的原理。在高温区,磁制冷是利用铁磁性材料在居里温度附近等温去磁以获得大的磁嫡变进行制冷的。我们把磁制冷中这种吸热、放热的磁性材料称磁制冷工质,磁制冷中制冷的效果、效率依赖于磁制冷工质的磁嫡变大小或磁热效应。磁制冷研究中一个十分关键的问题就是磁制冷工质的研究。与通常的压缩气体致冷方式相比较,磁制冷使用的是固态工质,它具有较大的嫡密度,使致冷机体积小,只有活赛式压缩机的一半。磁制冷机是利用磁场变化来取代压力变化,这样整个系统就省去了压缩机、膨胀机等运动机械,因此结构相对简单,振动和噪音也大幅度降低,。软磁合金 另一方面,固态工质使得所有的热交换能在液态和固态之间进行,功耗低,,可达到气体致冷机的十倍。由于气体致冷工质使用的氟里昂气体对大气中臭氧层有破坏作用而被国际上禁用,从而更促使磁制冷成为引人瞩目的国际研究课题。磁制冷总的研究趋势是低温向高温发展
钐钴磁铁——具有高的强度和对高温和腐蚀的抵抗能力。它是在20世纪70年代被开发出来的,是种所谓的稀土永磁体。几乎与钕铁硼拥有相似的强度,是贵的一种磁体,通常被用在需要抵御高温和腐蚀的地方,也易碎和不易进行机械加工。
钕铁硼磁铁:的稀土类磁铁,不像钐钴那样脆,但使用温度没有钐钴磁铁高。在常温情况下也极易氧化,因此表面须电镀。形状有圆片形,圆环形,方块形,瓦片形。有多种尺寸可供选择钕铁硼磁铁是目前的磁铁,而且非技术领域使用也越来越广泛,如吸附磁铁,玩具,首饰等。
钐钴磁铁:稀土类磁铁,材料非常脆,但耐高温,可在300摄氏度的条件下使用。圆片形,圆环形,方块形,瓦片形。有多种尺寸可供选择高技术领域及高温环境。
铝镍钴磁铁:早应用于技术领域的磁性材料。可以在非常高的温度下使用(近500摄氏度)。加工过后表面呈不锈钢似的亮色。形状有圆片形,圆柱形,方块形,马蹄形等。应用于仪器,仪表及高温环境。
磁铁成型取向:
工艺简介:取向的作用是使混乱取向的粉未颗粒的易磁化方向c轴转到同一个方向上来,从而获得大的剩磁。压型的主要目的就是将粉未压制成一定形状与尺寸的压坏,同时尽可能保持在磁场取向中所获得的晶粒取向度。我们设计采用成型磁场压机和等静压机进行二次成型,对于异形磁体,采用特殊的模具工装,直接成型,烧结后的磁体只需要进行稍微的表面处理即可投入使用,大大节省了材料和后续的加工成本。
工艺设备:磁场压机、等静压机