高分辨率与辨认速度的矛盾
从模仿相机到高清相机,也会引发图像的高分辨率与辨认速度相矛盾的问题。高清的优势显而易见,但是任何事情都是两面的,在车牌识别中车牌辨认时主要表现为:高清图片由于图片掩盖面广,可能会同时在图片中呈现多个车牌的辨认。这就对车牌辨认的速度请求很高,车牌辨认系统关于高清视频流码流过大,还会因对辨认系统资源占用需求过大而剖析起来会呈现处置速渡过慢的问题,这可能招致呈现漏车现象,而难以完成对车辆抓拍率和车牌辨认率的提升。
车牌辨认系统对污损车牌的辨认效果不好
在公路和城市内的实践应用过程中,很难所触及到的车牌都是没有污损的,车牌在运用几年之后,难免会呈现污染和磨损等现象,而在路面上行驶的车辆也很难都是规范洁净的车牌,因而在实践环境中,面对破损污旧的车牌,如何进步车牌辨认系统的辨认才能也是实践需求处理的问题。
车牌识别系统(VehicleLicensePlateRecognion,VLPR)是指能够检测到受监控路面的车辆并自动提取车辆牌照信息(含汉字字符、英文字母、阿拉伯数字及号牌颜色)进行处理的技术。车牌识别是现代智能交通系统中的重要组成部分之一,应用十分广泛。它以数字图像处理、模式识别、计算机视觉等技术为基础,对摄像机所拍摄的车辆图像或者视频序列进行分析,得到每一辆汽车的车牌号码,从而完成识别过程。通过一些后续处理手段可以实现停车场收费管理,交通流量控制指标测量,车辆定位,汽车防盗,高速公路超速自动化监管、闯红灯电子、公路收费站等等功能。对于维护交通安全和城市治安,防止交通堵塞,实现交通自动化管理有着现实的意义。
车牌识别技术结合电子不停车收费系统(ETC)识别车辆,过往车辆通过道口时无须停车,即能够实现车辆身份自动识别、自动收费。在车场管理中,为提高出入口车辆通行效率,车牌识别针对无需收停车费的车辆(如月卡车、内部免费通行车辆),建设无人值守的快速通道,免取卡、不停车的出入体验,正改变出入停车场的管理模式。
车牌定位
从整个图像中准确地检测出车牌区域,是车牌识别过程的一个重要步骤,如果定位失败或定位不完整,会直接导致终识别失败。由于复杂的图像背景,且要考虑不清晰车牌的定位,所以很容易把栅栏,广告牌等噪声当成车牌,所以如何排除这些伪车牌也是车牌定位的一个难点。为了提高定位的准确率和提高识别速度,一般的车牌识别系统都会设计一个外部接口,让用户自己根据现场环境设置不同的识别区域。
字符分割
定位出车牌区域后,由于并不知道车牌中总共有几个字符、字符间的位置关系、每个字符的宽高等信息,所以,为了车牌类型匹配和字符识别正确,字符分割是的一步。字符分割的主要思路是,基于车牌的二值化结果或边缘提取结果,利用字符的结构特征、字符间的相似性、字符间间隔等信息,一方面把单个字符分别提取出来,也包括粘连和断裂字符等特殊情况的处理;另一方面把宽、高相似的字符归为一类从而去除车牌边框以及一些小的噪声。一般采用的算法有:连通域分析、投影分析,字符聚类和模板匹配等。污损车牌和光照不均造成的模糊车牌仍是字符分割算法所面对的挑战,有待更好的算法出现并解决以上问题。
硬件识别:通俗的解释是通过立的硬件设备,对所抓拍图片进行一系列的字符处理;目前停车场系统行业中硬件识别也分为两种,即带有单的车牌识别仪和前端硬件识别两种,安视睿主要采用的是前端硬件识别。
前端硬件识别一体式摄像机适应市场需求,目前得到了广大客户的喜爱。安视睿前端硬件识别也叫一体式车牌识别摄像机,是将传统单的车牌识别仪嵌入至摄像机中,实现前端硬件与摄像机一体化,实现图像抓拍、视频流传输、字符识别、道闸抬杆等一系列的工作。
小区出入口
车牌识别还有小区的出入口收费系统之间进行联动,主要作用就是可以识别进入到小区的车辆是否属于本在小区进行注册的小区业主的车辆,如果像是一些外来的车辆,那么就可以查相关的资料,同时还需要进行记录进入的时间,到出小区的时候进行相应的收费根据。有了车牌识别系统之后,甚至能够做到无人值守,而且来说配合支付宝或者是等第三方应用,这样就能实现自动进行收费,比较常见于各大小区以及大型的超市。
个人停车车库
可能有不少人都有了属于自己的私人车库,就会有很多的个人的车库,直接让车库门还有车牌识别系统之间进行联动,只需要将自己的车开到门前,车库的门就会自动打开,非常的方便有,比较常见的就是用车库滑升门或者是涡轮硬质快速卷帘门来配合车牌识别系统。