一套完整的液压设备 ,它的液压系统由液压马达、液压泵、液压控制阀及液压辅件四大部分组成。液压系统的能量消耗与液压泵的工作性能有很大关系 ,也与其他元件的工作状况密不可分。提高液压泵的总效率液压泵是将机械能转换成液压能的能量转换装置 ,在不考虑压力损失的情况下 ,液压泵的总效率ηz=ηrηj,若提高液压泵的总效率 ,提高其容积效率 ηr 和机械效率 ηj,这不仅取决于液压泵的结构形式 ,而且和使用压力、液压泵转速及液体粘度等因素有关。液压泵的形式和压力对总效率的影响由齿轮泵、柱塞泵的总效率和压力的关系可知 ,高压泵在低压区域内使用时 ,总效率是低的。而低压泵在高压区域内使用时 ,总效率也低。因此 ,根据负载压力情况适当选择泵的形式 ,使其能在较高的效率下工作。一般压力在 2 5MPa以下时选用齿轮泵 ;压力在 2 5~ 6 3MPa范围内选用叶片泵 ;压力在 6 3MPa以上选用柱塞泵。
泵和马达的发热
在液压传动当中,旋转式流体元件都在低于效率的情况下运转,这就意味着,输入到系统的能量比输出的能量多,其损失的能量主要为泵和马达的内部磨损形成温升转化成热能。
调试、维护、使用不当带来能量损失
在企业当中,由于调试、维护和操作不当导致的液压系统油温较高,而出现能量损失和元件损坏的现象,也是比较普遍存在的问题。 为常见的现象有恒压变量泵的溢流阀同系统的安全阀调整不匹配,导致泵始终存在流量输出,安全阀(或溢流阀、平衡阀)出现故障或压力调整过低,压力继电器出现故障或调整不当等。
液压系统节能的目的是使泵的流量与负载所要求的流量相一致,在不影响系统功能的前提下,尽量减少滋流损失。以前单一追求功能的设计思想已经行不通了,基于功率匹配是现时的大趋势。此外,提高初始的能量转换效率也非常有必要,这就要求在电动机一液压泵,液压泵一液压泵的组合上不断进行优化,并且不断在实践中通过改进液压元件的分布结构来节约能源,节约液压系统的运行成本。上述是从节约使用能源来达到节能的目的。现在,能量回收利用技术也是节能技术的一部分,而且变得越来越重要,它将节能效果推向了一个顶峰,也应用到了几乎每一个液压系统中。
展望前景,随着计算机技术、微电子技术和比例控制技术的发展,不断将这些新技术与节能理念相结合,这些将地提高液压系统的效率,提高产品的市场竞争力。
在液压系统中,各被压元件都有相对运动的表面,如液压缸内表面和活塞外表面,因为要有相对运动,所以它们之间都有一定的间隙。如果间隙的一边为高压油,另一边为低压油,则高压油就会经间隙流向低压区从而造成泄漏。
同时,由于液压元件密封不完善,一部分油液也会向外部泄漏。这种泄漏造成的实际流量有所减少,这就是我们所说的流量损失。
流量损失影响运动速度,而泄漏又难以避免,所以在液压系统中泵的额定流量要略大于系统工作时所需的大流量。通常也可以用系统工作所需的大流量乘以一个1.1~1.3的系数来估算
液压系统的作用为通过改变压强增大作用力。一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元件(附件)和液压油。液压系统可分为两类:液压传动系统和液压控制系统。液压传动系统以传递动力和运动为主要功能。液压控制系统则要使液压系统输出满足特定的性能要求(特别是动态性能) [1] ,通常所说的液压系统主要指液压传动系统。