卧螺离心机使用的差速器主要以行星差速器以及摆线差速器为主。即便采用液压差速器,也是进口该部件,并配合其他部件(如驱动液压单元)在国内生产组装的形式,应用在各分离领域内。由于进口液压差速器价格昂贵,使卧螺离心机的制造成本大大增加,降低了国内产品的竞争实力。针对该卧螺离心机现状,本公司采用引进技术,结合国内相关加工水平,成功的将国产液压差速器应用于卧螺离心机,并取得一定成效。卧螺离心机主要由转鼓,螺旋,差速系统,液位挡板,驱动系统及控制系统等组成,卧螺离心机是利用固液两相的密度差,在离心力的作用下,加快固相颗粒的沉降速度来实现固液分离的,
卧螺离心机具体分离过程为污泥和絮凝剂药液经管道被送入转鼓内混合腔,在此进行混合絮凝(若为污泥泵前加药或泵后管道加药,则已提前絮凝反应),由于转子(螺旋和转鼓)的高速旋转和磨擦阻力,污泥在转子内部被加速并形成一个圆柱液环层(液环区),在离心力的作用下比重较大固体颗粒沉降到转鼓内壁形成泥层(固环层),再利用螺旋和转鼓的相对速度差把固相推向转鼓锥端,推出液面之后(岸区或称干燥区)泥渣得以脱水干燥,推向排渣口排出,滤液经返流管从转鼓大端排出,实现固液分离。二手卧螺离心机在整个生产工艺中处于成品的生产环节,所以对卧螺离心机的品质和技术的改进,直接影响到相关产品的终的品质和产量。随着社会经济的不断发展以及人们生产、生活理念的改变,对卧螺离心机的技术和设备也提出了一些新的发展要求。例如在保护环境的呼声越来越高的情况下,卧螺离心机中节能技术的应用与研究成为一个重要的方面。二手卧螺离心机是一种广泛应用于石油、化工、冶金、、食品、轻工等行业的机械,既可以用于液相澄清,也可以用于固相脱水。由于离心分离过程的复杂性和多样性,例如悬浮液的物理性能和浓度非常轻易变化,特别是固相颗粒的大小外形和运动的杂乱状态带来的题目,给理论和试验研究造成了大的困难。计算流体力学的发展,为卧螺离心机流场研究开辟了新的方向。在此基础上,采用Fluent软件对卧螺离心机流场进行数值模拟,研究了其活动规律和液-固分离特点。
卧螺离心机都有一个大处能力要求,这种要求有两方面的数据参考指导:
A、大可处干固体负荷,即每小时处的大不挥发固体固体重量,以KGDS(干固体)/h表示;
B、大可处水力负荷,即进入设备的污泥流量,以m3/h表示,它与进泥浓度(固含量)的乘积即为干固体负荷。在正常污泥浓度情况下,应大处干固体负荷在设备厂商标定的设备论负荷的70%一90%为好,要避免设备利用率过低,同时避免设备长期在高负荷下运转而造成设备损耗加快,维护周期缩短。在设备负荷过大的情况下,无论如何增加絮凝剂用量,也不会使处效果好转,表现为泥饼干度不想,上清液携带固体偏高、回收率下降,由于上清液携带的泥沙溢流造成设备磨损,动平衡破坏、震动加剧。有些时候,由于污泥浓度增加,造成按照原流量进泥时,实际进泥负荷超过了该设备的可接纳负荷指标使处效果下降。
具有分离精度高,机处量大,处过程连续化、自动化,操作与维修方便,对不同工艺过程适应性强等特点,在众多经济领域中得到广泛应用。特别是近些年来,一方面生物工程技术发展迅速,在缓解能源供应压力、提高医药卫生条件、保护环境、促进社会与经济的可持续性发展方面发挥着越来越重要的作用;另一方面由于新技术、新材料的不断应用。不同密度互不相溶的液体及固相颗粒进入高速旋转的转鼓内,在强大的离心力场作用下,密度大的固体颗粒向外运动积聚在转鼓的周壁,而不同密度互不相溶的液体则在内层形成圆环,密度相对较小的液体圆环在内,密度相对较小的液体圆环在外,而分离界面(两种液体圆环接触处)可根据不同物料和分离要求进行调节。
卧螺离心机转鼓与螺旋以一定差速同向高速旋转,物料由进料管连续引入输料螺旋内筒,加速后进入转鼓,在离心力场作用下,较重的固相物沉积在转鼓壁上形成沉渣层。输料螺旋将沉积的固相物连续不断地推至转鼓锥端,经排渣口排出机外。较轻的液相物则形成内层液环,由转鼓大端溢流口连续溢出转鼓,经排液口排出机外。卧螺离心机能在全速运转下,连续进料、分离、洗涤和卸料。由于转子的高速旋转和摩擦阻力,污泥在转子内部被加速并形成一个圆柱液环层,在离心力的作用下,比重较大固体颗粒沉降到转鼓内壁形成泥层,再利用螺旋和转鼓的相对速度差把固相推向转鼓锥端,推出液面之后泥渣得以脱水干燥,推向排渣口排出,上清液从转鼓大端排出,实现固液分离。 物料在转鼓内的停留时间也越长,在相同的转速下,其分离因数就越大,分离效果越好。
卧螺离心机设计中较为重要的参数。从澄清效果来讲,要求锥角尽可能大一些;而从输渣和脱水效果来讲,要求锥角尽可能小些。由于输渣是离心机正常工作的必要条件,因此佳设计满足输渣条件。对于难分离的物料如活性污泥半锥角一般在6度以内,以便降低沉渣的回流速度。以液相有足够的沉降距离,但固相仅能停留其通过圆锥部位所需的时间,因此要求有较高的离心力;物料由这里进入转鼓内会引起此区已沉降的固体颗粒因扰动再度浮起,还会产生湍流和附加涡流,使分离效果降低。