为了克服单边磁拉力等问题,中问定了或转了的双边结构是应用为广泛的轴向永磁电机结构。永磁体的排列方式与径向永磁电机类似,可以是表贴式、内嵌式或Halbach形式。为了有效抑制有槽电机中的齿槽转矩,轴向永磁电机通常采用永磁体倾斜、偏移等方法减小齿槽转矩,相比定了斜槽,这些方法简单而有效。
轴向永磁电机(axial flux permanent magnetmachine AFPMM)也称盘式永磁电机 [1] ,因其结构紧凑、、功率密度大等优点获得越来越多的关注。AFPMM尤其适合应用于电动车辆、可再生能源系统、吃轮储能系统和工业设备等要求高转矩密度和空问紧凑的场合。
吃轮储能利用电动机带动吃轮高速旋转,将电能转化成动能储存起来,释放能量时利用吃轮带动发电机发电。在吃轮储能系统中,作为电能与机械能之问的能量转换核心部件,电机的选择直接决定了整个吃轮储能系统性能的优劣。
电机作为电动车辆上的核心部件,其性能特征要求严苛,需具备功率密度高,扭矩大、调速范围宽、、重量轻、体积小等特点。
提出了一种新的基于改进麦克斯韦方程组的三维有限元分析方法计算轴向永磁电机的空载磁通,求得标量磁势的拉普拉斯方程解析解,三维模型将边缘效应和弯曲效应考虑在内,但计算耗时较少。另外,一些 提出采用准三维模型以及分段式二维有限元的方法实现电机磁场较为的分析计算。
鉴于等效磁路法的计算时问和精度适中,此类方法适合应用于电机初始设计和参数优化。近年来,国内外研究人员对等效磁路法在不同类型电机中的应用做出了深入的研究,应用范围包括异步电机、开关磁阻电机、直线电机和轴向永磁电机等。
采用等效磁路模型,考虑磁路饱和以及磁通的三维分布,分析了一台中问转了轴向永磁电机的磁场分布,终实现优输出转矩的优化设计。采用等效磁路法计算了轴向永磁电机各个部分的磁通分布,由此得到反电动势波形,并通过傅里叶分析实现电机退磁的故障诊断。
等效磁路法(magnetic equivalent circuit MEC)采用“磁路”和“电路”类比的方法,在考虑磁路饱和、铁磁材料非线性以及永磁磁场和电枢反应磁场相互影响等因素下,利用随时问和空问变化的磁阻构建磁阻网络模型,通过节点磁位建立网络方程,求解得到电机磁场分布,进而求得电机相关静态特性。等效磁路法可以实现计算时问和计算精度的有效平衡,计算时问比有限元法少,而计算精度一般比解析法高。
考虑电枢反应对磁场的影响,运用解析算法分析无槽轴向永磁发电机的内部磁场,计算精度在s%以内;利用解析法计算定了无铁心轴向永磁电机在开路状态下的磁场