1756-BATA,控制器CPU模块驱动

  • 图片0
  • 图片1
  • 图片2
  • 图片3
  • 图片4
  • 图片5
1/6
新浪微博
QQ空间
豆瓣网
百度新首页
取消

触摸屏的个特性:

透明,它直接影响到触摸屏的视觉效果。透明有透明的程度问题,红外线技术触摸屏和表面声波触摸屏只隔了一层纯玻璃,透明可算,其它触摸屏这点就要好好推敲一番,“透明”,在触摸屏行业里,只是个非常泛泛的概念,很多触摸屏是多层的复合薄膜,仅用透明一点来概括它的视觉效果是不够的,它应该至少包括四个特性:透明度、色彩失真度、反光性和清晰度,还能再分,比如反光程度包括镜面反光程度和衍射反光程度,只不过触摸屏表面衍射反光还没到达CD 盘的程度,对用户而言,这四个度量已经基本够了。

由于透光性与波长曲线图的存在,通过触摸屏看到的图象不可避免的与原图象产生了色彩失真,静态的图象感觉还只是色彩的失真,动态的多媒体图象感觉就不是很舒服了,色彩失真度也就是图中的大色彩失真度自然是越小越好。平常所说的透明度也只能是图中的平均透明度,当然是越高越好。

反光性,主要是指由于镜面反射造成图像上重叠身后的光影,如人影、窗户、灯光等。反光是触摸屏带来的负面效果,越小越好,它影响用户的浏览速度,严重时甚至无法辨认图像字符,反光性强的触摸屏使用环境受到限制,现场的灯光布置也被迫需要调整。大多数存在反光问题的触摸屏都提供另外一种经过表面处理的型号:磨砂面触摸屏,也叫防眩型,价格略高一些,防眩型反光性明显下降,适用于采光非常充足的大厅或展览场所,不过,防眩型的透光性和清晰度也随之有较大幅度的下降。清晰度,有些触摸屏加装之后,字迹模糊,图像细节模糊,整个屏幕显得模模糊糊,看不太清楚,这就是清晰度太差。清晰度的问题主要是多层薄膜结构的触摸屏,由于薄膜层之间光反复反射折射而造成的,此外防眩型触摸屏由于表面磨砂也造成清晰度下降。清晰度不好,眼睛容易疲劳,对眼睛也有一定伤害,选购触摸屏时要注意判别。

触摸屏的第二个特性:

触摸屏是坐标系统,要选哪就直接点那,与鼠标这类相对定位系统的本质区别是一次到位的直观性。坐标系的特点是每一次定位坐标与上一次定位坐标没有关系,触摸屏在物理上是一套立的坐标定位系统,每次触摸的数据通过校准数据转为屏幕上的坐标,这样,就要求触摸屏这套坐标不管在什么情况下,同一点的输出数据是稳定的,如果不稳定,那么这触摸屏就不能坐标定位,点不准,这就是触摸屏怕的问题:漂移。技术原理上凡是不能同一点触摸每一次采样数据相同的触摸屏都免不了漂移这个问题,目前有漂移现象的只有电容触摸屏。

触摸屏的第三个特性:

检测触摸并定位,各种触摸屏技术都是依靠各自的传感器来工作的,甚至有的触摸屏本身就是一套传感器。各自的定位原理和各自所用的传感器决定了触摸屏的反应速度、可靠性、稳定性和寿命。

. 折叠 编辑本段 主要类型.



从技术原理来区别触摸屏,可分为五个基本种类:矢量压力传感技术触摸屏、电阻技术触摸屏、电容技术触摸屏、红外线技术触摸屏、表面声波技术触摸屏。其中矢量压力传感技术触摸屏已退出历史舞台;红外线技术触摸屏价格低廉,但其外框易碎,容易产生光干扰,曲面情况下失真;电容技术触摸屏设计构思合理,但其图像失真问题很难得到根本解决;电阻技术触摸屏的定位准确,但其价格颇高,且怕刮易损;表面声波触摸屏解决了以往触摸屏的各种缺陷,清晰不容易被损坏,适于各种场合,缺点是屏幕表面如果有水滴和尘土会使触摸屏变的迟钝,甚至不工作。

按照触摸屏的工作原理和传输信息的介质,把触摸屏分为四种,它们分别为电阻式、电容感应式、红外线式以及表面声波式。每一类触摸屏都有其各自的优缺点,要了解哪种触摸屏适用于哪种场合,关键就在于要懂得每一类触摸屏技术的工作原理和特点。下面对上述的各种类型的触摸屏进行简要介绍一下:

折叠 电阻式触摸屏


这种触摸屏利用压力感应进行控制


。电阻触摸屏的主要部分是一块与显示器表面非常配合的电阻薄膜屏,这是一种多层的复合薄膜,它以一层玻璃或硬塑料平板作为基层,表面涂有一层透明氧化金属(透明的导电电阻)导电层,上面再盖有一层外表面硬化处理、光滑防擦的塑料层、它的内表面也涂有一层涂层、在他们之间有许多细小的(小于1/1000英寸)的透明隔离点把两层导电层隔开绝缘。当手指触摸屏幕时,两层导电层在触摸点位置就有了接触,电阻发生变化,在X和Y两个方向上产生信号,然后送触摸屏控制器。控制器侦测到这一接触并计算出(X,Y)的位置,再根据模拟鼠标的方式运作。这就是电阻技术触摸屏的基本的原理。所以电阻触摸屏可用较硬物体操作。 电阻类触摸屏的关键在于材料科技,常用的透明导电涂层材料有:

ITO,氧化铟,弱导电体,特性是当厚度降到1800个埃(埃=10-10米)以下时会突然变得透明,透光率为80%,再薄下去透光率反而下降,到300埃厚度时又上升到80%。ITO是所有电阻技术触摸屏及电容技术触摸屏都用到的主要材料,实际上电阻和电容技术触摸屏的工作面就是ITO涂层。

镍金涂层,五线电阻触摸屏的外层导电层使用的是延展性好的镍金涂层材料,


外导电层由于频繁触摸,使用延展性好的镍金材料目的是为了延长使用寿命,但是工艺成本较为高昂。镍金导电层虽然延展性好,但是只能作透明导体,不适合作为电阻触摸屏的工作面,因为它导电率高,而且金属不易做到厚度非常均匀,不宜作电压分布层,只能作为探层。

1、四线电阻屏

四线电阻模拟量技术的两层透明金属层工作时每层均增加5V恒定电压:一个竖直方向,一个水平方向。总共需四根电缆。特点:高解析度,高速传输反应。 表面硬度处理,减少擦伤、刮伤及防化学处理。具有光面及雾面处理。一次校正,稳定性高,漂移。

2、五线电阻屏

五线电阻技术触摸屏的基层把两个方向的电压场通过精密电阻网络都加在玻璃的导电工作面上,我们可以简单的理解为两个方向的电压场分时工作加在同一工作面上,而外层镍金导电层只仅仅用来当作纯导体,有触摸后分时检测内层ITO接触点X轴和Y轴电压值的方法测得触摸点的位置。五线电阻触摸屏内层ITO需四条引线,外层只作导体仅仅一条,触摸屏得引出线共有5条。

特点:解析度高,高速传输反应。表面硬度高,减少擦伤、刮伤及防化学处理。同点接触3000万次尚可使用。导电玻璃为基材的介质。一次校正,稳定性高,漂移。五线电阻触摸屏有位和对环境要求高的缺点。

3、电阻屏的局限

不管是四线电阻触摸屏还是五线电阻触摸屏,它们都是一种对外界完全隔离的工作环境,


不怕灰尘和水汽,它可以用任何物体来触摸,可以用来写字画画,比较适合工业控制领域及办公室内有限人的使用。电阻触摸屏共同的缺点是因为复合薄膜的外层采用塑胶材料,不知道的人太用力或使用锐器触摸可能划伤整个触摸屏而导致报废。不过,在限度之内,划伤只会伤及外导电层,外导电层的划伤对于五线电阻触摸屏来说没有关系,而对四线电阻触摸屏来说是致命的。

性能特点

1、它们都是一种对外界完全隔离的工作环境,不怕灰尘、水汽和油污;

2、可以用任何物体来触摸,可以用来写字画画,这是它们比较大的优势;

3、电阻触摸屏的精度只取决于A/D转换的精度,因此都能轻松达到4096*4096·比较而言,五线电阻比四线电阻在分辨率精度上还要,但是成本代价大,因此售价非常高。

折叠 电容式触摸屏


1、电容技术触摸屏

是利用人体的电流感应进行工作的。电容式触摸屏是一块四层复合玻璃屏,玻璃屏的内表面和夹层各涂有一层ITO,外层是一薄层矽土玻璃保护层,夹层ITO涂层作为工作面,四个角上引出四个电极,内层ITO为屏蔽层以良好的工作环境。当手指触摸在金属层上时,由于人体电场,用户和触摸屏表面形成以一个耦合电容,对于高频电流来说,电容是直接导体,于是手指从接触点吸走一个很小的电流。这个电流分从触摸屏的四角上的电极中流出,并且流经这四个电极的电流与手指到四角的距离成正比,控制器通过对这四个电流比例的计算,得出触摸点的位置。

常见故障
折叠后期维护
1、注意事项

在雷雨季节,如果整个车间电网防雷效果不好,强烈雷击会造成电网不稳定,容易发生晶闸管模块击穿、熔断器烧坏现象,这在大功率直流调速器上表现的尤为严重。因此供电电网的稳定是直流调速稳定运行的基础条件,若遇到强烈雷雨天气或电网不稳定时,好暂时停止使用设备,待电网稳定后再重新投入使用。

由于压力机的启动为重载启动,因此,电机不能频繁启动,次数限制在每小时不超过4次为宜,机床断电时,停主电机,等主电机停稳后,再切断电源。

只有经过审定合格的人员(具备有关整流器的知识,并理解所提供的资料的内容)才能从事整流器的安装、启动、操作、故障排除或修理工作。在电源断开后,吸收电容器上继续携带危险电压,出于这个原因,在整流器切断至少2分钟内一定不要打开整流器。为了避免飞弧和由此引起的不可挽回的损失,整流器对尘埃入口做的保护,根据污染等级,尘埃和外来物体,特别是通过冷却气流带入的污染物定期清理,至少每年一次,整流器以干燥压缩空气来清扫,大压力1bar。

2、后期维护

1)风扇的更换

风扇轴承的设计工作寿命为30000小时,为了维护晶闸管设备的有效性,在使用期满时应及时更换。

2)印刷电路板的更换

印刷电路板包含静电敏感元件,在触摸一块印刷电路板之前,执行工作人员自己进行静电放电,做到这一点简单的方法是触摸一下一个导电接地导体,例如插座的接地线。

3)晶闸管模块的更换

晶闸管模块是通过自攻螺丝安装的,当一个模块更换时,散热器支撑表面清扫并且在晶闸管模块上涂上一层新的导热膏。使用和原来长度相同的公制螺钉和固定件去固定模块。

44444变频器
变频器(Variable-frequency Drive,VFD)是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成。变频器靠内部IGBT的开断来调整输出电源的电压和频率,根据电机的实际需要来提供其所需要的电源电压,进而达到节能、调速的目的,另外,变频器还有很多的保护功能,如过流、过压、过载保护等等。随着工业自动化程度的不断提高,变频器也得到了非常广泛的应用。
基本简介
变频器(Variable-frequency Drive,缩写:VFD),也称为变频驱动器或驱动控制器,可译作Inverter(和逆变器的英文相同)。变频器是可调速驱动系统的一种,是应用变频驱动技术改变交流电动机工作电压的频率和幅度,来平滑控制交流电动机速度及转矩,常见的是输入及输出都是交流电的交流/交流转换器。

在变频器出现之前,要调整电动机转速的应用需透过直流电动机才能完成,不然就是要透过利用内建耦合机的VS电动机,在运转中用耦合机使电动机的实际转速下降,变频器简化了上述的工作,缩小了设备体积,大幅度降低了维修率。不过变频器的电源线及电动机线上面有高频切换的讯号,会造成电磁干扰,而变频器输入侧的功率因素一般不佳,会产生电源端的谐波。
变频器
变频器

变频器的应用范围很广,从小型家电到大型的矿场研磨机及压缩机。约1/3的能量是消耗在驱动定速离心泵、风扇及压缩机的电动机上,而变频器的市场渗透率仍不算高。能源效率的显著提升是使用变频器的主要原因之一。

变频器技术和电力电子有密切关系,包括半导体切换元件、变频器拓扑、控制及模拟技术、以及控制硬件及固件的进步等。
工作原理
折叠概述
主电路是给异步电动机提供调压调频电源的电力变换部分,变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容。电流型是将电流源的直流变换为交流的变频器,其直流回路滤波是电感。 它由三部分构成,将工频电源变换为直流功率的“整流器”,吸收在变流器和逆变器产生的电压脉动的“平波回路”,以及将直流功率变换为交流功率的“逆变器”。

折叠整流器
近大量使用的是二极管的变流器,它把工频电源变换为直流电源。也可用两组晶体管变流器构成可逆变流器,由于其功率方向可逆,可以进行再生运转。

折叠平波回路
在整流器整流后的直流电压中,含有电源6倍频率的脉动电压,此外逆变器产生的脉动电流也使直流电压变动。为了抑制电压波动,采用电感和电容吸收脉动电压(电流)。装置容量小时,如果电源和主电路构成器件有余量,可以省去电感采用简单的平波回路。

折叠逆变器
同整流器相反,逆变器是将直流功率变换为所要求频率的交流功率,以所确定的时间使6个开关器件导通、关断就可以得到3相交流输出。以电压型pwm逆变器为例示出开关时间和电压波形。

控制电路是给异步电动机供电(电压、频率可调)的主电路提供控制信号的回路,它有频率、电压的“运算电路”,主电路的“电压、电流检测电路”,电动机的“速度检测电路”,将运算电路的控制信号进行放大的“驱动电路”,以及逆变器和电动机的“保护电路”组成。

(1)运算电路:将外部的速度、转矩等指令同检测电路的电流、电压信号进行比较运算,决定逆变器的输出电压、频率。

(2)电压、电流检测电路:与主回路电位隔离检测电压、电流等。

(3)驱动电路:驱动主电路器件的电路。它与控制电路隔离使主电路器件导通、关断。

(4)速度检测电路:以装在异步电动机轴机上的速度检测器(tg、plg等)的信号为速度信号,送入运算回路,根据指令和运算可使电动机按指令速度运转。

(5)保护电路:检测主电路的电压、电流等,当发生过载或过电压等异常时,为了防止逆变器和异步电动机损坏,使逆变器停止工作或抑制电压、电流值。

折叠编辑本段历史发展
变频器 - 西安博能达电控技
变频器 - 西安博能达电控技
变频技术诞生背景是交流电机无级调速的广泛需求。传统的直流调速技术因体积大故障率高而应用受限。

20世纪60年代以后,电力电子器件普遍应用了晶闸管及其升级产品。但其调速性能远远无法满足需要。

20世纪70年代开始,脉宽调制变压变频(PWM-VVVF)调速的研究得到突破,20世纪80年代以后微处理器技术的完善使得各种优化算法得以容易的实现。

20世纪80年代中后期,美、日、德、英等发达国家的 VVVF变频器技术实用化,商品投入市场,得到了广泛应用。 早的变频器可能是日本人买了英国专利研制的。不过美国和德国凭借电子元件生产和电子技术的优势,产品迅速抢占市场。

步入21世纪后,国产变频器逐步崛起,现已逐渐抢占市场。上海和深圳成为国产变频器发展的阵地,涌现出了像汇川变频器、英威腾变频器、安邦信变频器、欧瑞变频器等一批国产变频器。其中安邦信变频器成立于1998年,是我国早生产变频器的厂家之一。十几年来,安邦信人以浑厚的文化底蕴作基石,支撑着成长,企业较早通过TUV机构ISO9000质量体系认证,被授予“高新技术企业”, 多年被评为 “中国变频器用户满意国内品牌”。

折叠编辑本段发展现状
《中国变频器行业市场前瞻与投资战略规划分析报告前瞻》数据显示,2011年末我国规模以上变频器生产企业约有200家,这些规模以上的企业中,生产商以民营企业居多。2011年,行业实现销售收入252亿元,同比增长21%。

折叠编辑本段基本分类

利德华福高压变频器再创新
利德华福高压变频器再创新
这是近几年才发展起来的一种电路拓扑结构,它主要由输入变压器、功率单元和控制单元三大部分组成。采用模块化设计,由于采用功率单元相互串联的办法解决了高压的难题而得名,可直接驱动交流电动机,无需输出变压器,更不需要任何形式的滤波器。

整套变频器共有18个功率单元,每相由6台功率单元相串联,并组成Y形连接,直接驱动电机。每台功率单元电路、结构完全相同,可以互换,也可以互为备用。

变频器的输入部分是一台移相变压器,原边Y形连接,副边采用沿边三角形连接,共18副三相绕组,分别为每台功率单元供电。它们被平均分成Ⅰ、Ⅱ、Ⅲ三大部分,每部分具有6副三相小绕组,之间均匀相位偏移10度。

该变频器的特点如下:

① 采用多重化PWM方式控制,输出电压波形接近正弦波。

② 整流电路的多重化,脉冲数多达36,功率因数高,输入谐波小。

③ 模块化设计,结构紧凑,维护方便,增强了产品的互换性。

④ 直接高压输出,无需输出变压器。

⑤ 极低的dv/dt输出,无需任何形式的滤波器。

⑥ 采用光纤通讯技术,提高了产品的抗干扰能力和可靠性。

⑦ 功率单元自动旁通电路,能够实现故障不停机功能。

随着现代电力电子技术及计算机控制技术的迅速发展,促进了电气传动的技术革命。交流调速取代直流调速,计算机数字控制取代模拟控制已成为发展趋势。交流电机 变频调速是当今节约电能,改善生产工艺流程,提高产品质量,以及改善运行环境的一种主要手段。变频调速以其率,高功率因数,以及的调速和启制动性能等诸多优点而被国内外公认为有发展前途的调速方式。

以前的高压变频器,由可控硅整流,可控硅逆变等器件构成,缺点很多,谐波大, 对电网和电机都有影响。近年来,发展起来的一些新型器件将改变这一现状,如IGBT、IGCT、SGCT等等。由它们构成的高压变频器,性能,可以实 现PWM逆变,甚至是PWM整流。不仅具有谐波小,功率因数也有很大程度的提高。

按变换的环节分类:

(1)交-直-交变频器,则是先把工频交流通过整流器变成直流,然后再把直流变换成频率电压可调的交流,又称间接式变频器,是目前广泛应用的通用型变频器。

(2)可分为交-交变频器,即将工频交流直接变换成频率电压可调的交流,又称直接式变频器

按直流电源性质分类:

(1)电压型变频器

电压型变频器特点是中间直流环节的储能元件采用大电容,负载的无功功率将由它来缓冲,直流电压比较平稳,直流电源内阻较小,相当于电压源,故称电压型变频器,常选用于负载电压变化较大的场合。

(2)电流型变频器

电流型变频器特点是中间直流环节采用大电感作为储能环节,缓冲无功功率,即扼制电流的变化,使电压接近正弦波,由于该直流内阻较大,故称电流源型变频器(电流型)。电流型变频器的特点(优点)是能扼制负载电流频繁而急剧的变化。常选用于负载电流变化较大的场合。

按主电路工作方法分类:电压型变频器、电流型变频器

按照工作原理分类:可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等

按照开关方式分类:可以分为PAM控制变频器、PWM控制变频器和高载频PWM控制变频器

按照用途分类:可以分为通用变频器、变频器、高频变频器、单相变频器和三相变频器等。此外,变频器还可以按输出电压调节方式分类,按控制方式分类,按主开关元器件分类,按输入电压高低分类。

按变频器调压方法:

⑴、PAM变频器是一种通过改变电压源Ud 或电流源Id的幅值进行输出控制的。

⑵、PWM变频器方式是在变频器输出波形的一个周期产生个 脉冲波个脉冲,其等值电压为正弦波,波形较平滑。

按工作原理分:

⑴、U/f控制变频器(VVVF控制)

⑵、SF控制变频器(转差频率控制)

⑶、VC控制变频器(Vectory Control 矢量控制)。

按国际区域分类:

⑴、国产变频器:普传、安邦信、浙江三科、欧瑞传动、森兰、英威腾、蓝海华腾、迈凯诺、伟创、美资易泰帝、香港变频器

台湾变频器台达;

⑵、欧美变频器:ABB、西门子、日本变频器富士三菱、韩国变频器、。

按电压等级分类:

⑴、高压变频器:3KV、6KV、10KV

⑵、中压变频器:660V、1140V

⑶、低压变频器:220V、380V

按电压性质分类:

⑴、交流变频器:AC-DC-AC(交-直-交)、AC-AC(交-交)

⑵、直流变频器:DC-AC(直-交)

三菱变频器
1、FR-A700

A700产品适用于各类对负载要求较高的设备,如起重、电梯、印包、印染、材料卷取及其它通用场合。三菱FR-A700系列变频器具有高水准的驱动性能。

具有特的无传感器矢量控制模式,在不需要采用编码器的情况下可以使用各式各样的机械设备在低速区域的运转。

带转矩模式控制,并且在速度控制模式下可以使用转矩限制功能。

具有矢量控制功通能(带编码器),变频器可以实现位置控制和快响应、的速度控制(零速控制,伺服锁定等)及转矩控制。

2、FR-F700

F700变频器除了应用在很多通用场合外,特别适合于风机、水泵、空调等行业。

FR-F700系列产品除了与其它变频器具有相同的常规PID控制功能外,并扩充了多泵控制功能。

佳励磁控制功能,除恒速时可以使用外,在加减速时也可以起作用,可以进一步优化节能效果。

新开发的节能监视功能,可以通过操作面板、输出端子(端子CA、AM)和通信来确认节能效果,使节能效果一目了然。

折叠
功能作用
折叠变频节能
变频器 - VSI200 - 沃森
变频器 - VSI200 - 沃森
变频器节能主要表现在风机、水泵的应用上。为了生产的可靠性,各种生产机械在设计配用动力驱动时,都留有一定的富余量。当电机不能在满负荷下运行时,除达到动力驱动要求外,多余的力矩增加了有功功率的消耗,造成电能的浪费。风机、泵类等设备传统的调速方法是通过调节入口或出口的挡板、阀门开度来调节给风量和给水量,其输入功率大,且大量的能源消耗在挡板、阀门的截流过程中。当使用变频调速时,如果流量要求减小,通过降低泵或风机的转速即可满足要求。

电动机使用变频器的作用就是为了调速,并降低启动电流。为了产生可变的电压和频率,该设备要把电源的交流电变换为直流电(DC),这个过程叫整流。把直流电(DC)变换为交流电(AC)的装置,其科学术语为“inverter”(逆变器)。一般逆变器是把直流电源逆变为一定的固定频率和一定电压的逆变电源。对于逆变为频率可调、电压可调的逆变器我们称为变频器。变频器输出的波形是模拟正弦波,主要是用在三相异步电动机调速用,又叫变频调速器。对于主要用在仪器仪表的检测设备中的波形要求较高的可变频率逆变器,要对波形进行整理,可以输出标准的正弦波,叫变频电源。一般变频电源是变频器价格的15--20倍。由于变频器设备中产生变化的电压或频率的主要装置叫“inverter”,故该产品本身就被命名为“inverter”,即:变频器。

变频不是到处可以省电,有不少场合用变频并不一定能省电。 作为电子电路,变频器本身也要耗电(约额定功率的3-5%)。一台1.5匹的空调自身耗电算下来也有20-30W,相当于一盏长明灯. 变频器在工频下运行,具有节电功能,是事实。但是他的前提条件是:

、大功率并且为风机/泵类负载;

第二、装置本身具有节电功能(软件支持);

第三、长期连续运行。

这是体现节电效果的三个条件。除此之外,无所谓节不节电,没有什么意义。如果不加前提条件的说变频器工频运行节能,就是夸大或是商业炒作。知道了原委,你会巧妙的利用他为你服务。一定要注意使用场合和使用条件才好正确应用,否则就是盲从、轻信而“受骗上当”。

折叠功率因数补偿节能
无功功率不但增加线损和设备的发热,更主要的是功率因数的降低导致电网有功功率的降低,大量的无功电能消耗在线路当中,设备使用效率低下,浪费严重,使用变频调速装置后,由于变频器内部滤波电容的作用,从而减少了无功损耗,增加了电网的有功功率。

折叠软启动节能
电机硬启动对电网造成严重的冲击,而且还会对电网容量要求过高,启动时产生的大电流和震动时对挡板和阀门的损害,对设备、管路的使用寿命极为不利。而使用变频节能装置后,利用变频器的软启动功能将使启动电流从零开始,大值也不超过额定电流,减轻了对电网的冲击和对供电容量的要求,延长了设备和阀门的使用寿命。节省了设备的维护费用。

从理论上讲,变频器可以用在所有带有电动机的机械设备中,电动机在启动时,电流会比额定高5-6倍的,不但会影响电机的使用寿命而且消耗较多的电量.系统在设计时在电机选型上会留有一定的余量,电机的速度是固定不变,但在实际使用过程中,有时要以较低或者较高的速度运行,因此进行变频改造是非常有必要的。变频器可实现电机软启动、补偿功率因素、通过改变设备输入电压频率达到节能调速的目的,而且能给设备提供过流、过压、过载等保护功能。

折叠编辑本段控制方式
低压通用变频输出电压为380~650V,输出功率为0.75~400kW,工作频率为0~400Hz,它的主电路都采用交—直—交电路。其控制方式经历了以下四代。

1U/f=C的正弦脉宽调制(SPWM)控制方式:

其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出大转矩减小。另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。因此人们又研究出矢量控制变频调速。

电压空间矢量(SVPWM)控制方式:

它是以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形,以内切多边形逼近圆的方式进行控制的。经实践使用后又有所改进,即引入频率补偿,能消除速度控制的误差;通过反馈估算磁链幅值,消除低速时定子电阻的影响;将输出电压、电流闭环,以提高动态的精度和稳定度。但控制电路环节较多,且没有引入转矩的调节,所以系统性能没有得到根本改善。

矢量控制(VC)方式:

矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行立控制。通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。矢量控制方法的提出具有划时代的意义。然而在实际应用中,由于转子磁链难以准确观测,系统特性受电动机参数的影响较大,且在等效直流电动机控制过程中所用矢量旋转变换较复杂,使得实际的控制效果难以达到理想分析的结果。

直接转矩控制(DTC)方式:

1985年,德国鲁尔大学的DePenbrock教授提出了直接转矩控制变频技术。该技术在很大程度上解决了上述矢量控制的不足,并以新颖的控制思想、简洁明了的系统结构、优良的动静态性能得到了迅速发展。目前,该技术已成功地应用在电力机车牵引的大功率交流传动上。 直接转矩控制直接在定子坐标系下分析交流电动机的数学模型,控制电动机的磁链和转矩。它不需要将交流电动机等效为直流电动机,因而省去了矢量旋转变换中的许多复杂计算;它不需要模仿直流电动机的控制,也不需要为解耦而简化交流电动机的数学模型。

电源模块是可以直接贴装在印刷电路板上的电源供应器,其特点是可为集成电路(ASIC)、数字信号处理器 (DSP)、微处理器、存储器、现场可编程门阵列 (FPGA) 及其他数字或模拟负载提供供电。由于模块式结构的优点甚多,因此模块电源广泛用于交换设备、接入设备、移动通讯、微波通讯以及光传输、路由器等通信领域和汽车电子、航空航天等。
1概述编辑
一般来说,这类模块称为负载点 (POL) 电源供应系统或使用点电源供应系统 (PUPS)。由于模块式结构的优点甚多,因此模块电源广泛用于交换设备、接入设备、移动通讯、微波通讯以及光传输、路由器等通信领域和汽车电子、航空航天等。

尤其近几年由于数据业务的飞速发展和分布式供电系统的不断推广,模块电源的增幅已经超出了一次电源。模块电源具有隔离作用,抗干扰能力强,自带保护功能,便于集成。随着半导体工艺、封装技术和高频软开关的大量使用,模块电源功率密度越来越大,转换效率越来越高,应用也越来越简单。

人们在开关电源技术领域是边开发相关的电力电子器件,边开发 开关变频技术,两者相互促进推动着开关电源每年以超过两位数字的增长率向着轻、小、薄、低噪声、高可靠、抗干扰的方向发展。开关电源可分为AC/DC和DC/DC两大类,DC/DC变换器现已实现模块化,且设计技术及生产工艺在国内外均已成熟和标准化,并已得到用户的认可,但AC/DC的模块化,因其自身的特性使得在模块化的进程中,遇到较为复杂的技术和工艺制造问题。以下分别对两类开关电源的结构和特性作以阐述

2直流斩波编辑
DC/DC变换是将可变的直流电压变换成固定的直流电压,也称为直流斩波。斩波器的工作方式有两种,一是脉宽调制方式Ts不变,改变ton(通用),二是频率调制(

(1)Buck电路——降压斩波器,其输出平均电压U0小于输入电压Ui,极性相同。

(2)Boost电路——升压斩波器,其输出平均电压U0大于输入电压Ui,极性相同。

(3)Buck-Boost电路——降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电感传输。

(4)Cuk电路——降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电容传输。还有Sepic、Zeta电路。

上述为非隔离型DC-DC变换器电路,隔离型DC-DC变换器有正激电路、反激电路、半桥电路、全桥电路、推挽电路。

当今软开关技术使得DC/DC发生了质的飞跃,美国VICOR公司设计制造的多种ECI软开关DC/DC变换器,其大输出功率有300W、600W、800W等,相应的功率密度为(6.2、10、17)W/cm3,效率为(80~90)%。日本TDK-Lambda公司新推出的一种采用软开关技术的高频开关电源模块RM系列,其开关频率为(200~300)kHz,功率密度已达到27W/cm3,采用同步整流器(MOSFET代替肖特基二极管),使整个电路效率提高到90%。

3变换编辑
AC/DC变换是将交流变换为直流,其功率流向可以是双向的,功率流由电源流向负载的称为“整流”,功率流由负载返回电源的称为“有源逆变”。AC/DC变换器输入为50/60Hz的交流电,因经整流、滤波,因此体积相对较大的滤波电容器是的,同时因遇到安全标准(如UL、CCEE等)及EMC指令的限制(如IEC、、FCC、CSA),交流输入侧加EMC滤波及使用符合安全标准的元件,这样就限制AC/DC电源体积的小型化,另外,由于内部的高频、高压、大电流开关动作,使得解决EMC电磁兼容问题难度加大,也就对内部高密度安装电路设计提出了很高的要求,由于同样的原因,高电压、大电流开关使得电源工作损耗增大,限制了AC/DC变换器模块化的进程,因此采用电源系统优化设计方法才能使其工作效率达到一定的满意程度。

AC/DC变换按电路的接线方式可分为,半波电路、全波电路。按电源相数可分为,单相、三相、多相。按电路工作象限又可分为一象限、二象限、三象限、四象限。

开关电源的选用

开关电源在输入抗干扰性能上,由于其自身电路结构的特点(多级串联),一般的输入干扰如浪涌电压很难通过,在输出电压稳定度这一技术指标上与线性电源相比具有较大的优势,其输出电压稳定度可达(0.5~1)%。开关电源模块作为一种电力电子集成器件,在选用中应注意以下几点:

4电流选择编辑
因开关电源工作,一般可达到80%以上,故在其输出电流的选择上,应准确测量或计算用电设备的大吸收电流,以使被选用的开关电源具有高的性能价格比,通常输出计算公式为:

图1.普通的降压转换器

在频域内测量辐射和传导电磁干扰,这就是对已知波形做傅里叶级数展开,本文中我们着重考虑辐射电磁干扰性能。在同步降压转换器中,引起电磁干扰的主要开关波形是由Q1和Q2产生的,也就是每个场效应管在其各自导通周期内从漏极到源极的电流di/dt。图2所示的电流波形(Q和Q2on)不是很规则的梯形,但是我们的操作自由度也就更大,因为导体电流的过渡相对较慢,所以可以应用Henry Ott经典著作《电子系统中的噪声降低技术》中的公式1。我们发现,对于一个类似的波形,其上升和下降时间会直接影响谐波振幅或傅里叶系数(In)。

图2.Q1和Q2的波形

In=2IdSin(nπd)/nπd ×Sin(nπtr/T)/nπtr/T (1)

其中,n是谐波级次,T是周期,I是波形的峰值电流强度,d是占空比,而tr是tr或tf的小值。

在实际应用中,极有可能会同时遇到奇次和偶次谐波发射。如果只产生奇次谐波,那么波形的占空比为50%。而实际情况中极少有这样的占空比精度。

谐波系列的电磁干扰幅度受Q1和Q2的通断影响。在测量漏源电压VDS的上升时间tr和下降时间tf,或流经Q1和Q2的电流上升率di/dt 时,可以很明显看到这一点。这也表示,我们可以很简单地通过减缓Q1或Q2的通断速度来降低电磁干扰水平。事实正是如此,延长开关时间的确对频率 f=1/πtr的谐波有很大影响。不过,此时在增加散热和降低损耗间进行折中。尽管如此,对这些参数加以控制仍是一个好方法,它有助于在电磁干扰和热性能间取得平衡。具体可以通过增加一个小阻值电阻(通常小于5Ω)实现,该电阻与Q1和Q2的栅极串联即可控制tr和tf,你也可以给栅极电阻串联一个 “关断二极管”来立控制过渡时间tr或tf(见图3)。这其实是一个迭代过程,甚至连经验丰富的电源设计人员都使用这种方法。我们的终目标是通过放慢晶体管的通断速度,使电磁干扰降低至可接受的水平,同时其温度足够低以确保稳定性。

图3.用关联二极管来控制过渡时间

开关节点的物理回路面积对于控制电磁干扰也非常重要。通常,出于PCB面积的考虑,设计者都希望结构越紧凑越好,但是许多设计人员并不知道哪部分布局对电磁干扰的影响大。回到之前的降压稳压器例子上,该例中有两个回路节点(如图4和图5所示),它们的尺寸会直接影响到电磁干扰水平。

图4.降压稳压器模型1

图5.降压稳压器模型2

Ott关于不同模式电磁干扰水平的公式(2)示意了回路面积对电路电磁干扰水平产生的直接线性影响。

E=263×10-16(f2AI)(1/r) (2)

辐射场正比于下列参数:涉及的谐波频率(f,单位Hz)、回路面积(A,单位m2)、电流(I)和测量距离(r,单位m)。

此概念可以推广到所有利用梯形波形进行电路设计的场合,不过本文仅讨论电源设计。参考图4中的交流模型,研究其回路电流流动情况:起点为输入电容器,然后在Q1导通期间流向Q1,再通过L1进入输出电容器,后返回输入电容器中。

当Q1关断、Q2导通时,就形成了第二个回路。之后存储在L1内的能量流经输出电容器和Q2,如图5所示。这些回路面积控制对于降低电磁干扰是很重要的,在PCB走线布线时就要预先考虑清器件的布局问题。当然,回路面积能做到多小也是有实际限制的。

从公式2可以看出,减小开关节点的回路面积会有效降低电磁干扰水平。如果回路面积减小为原来的3倍,电磁干扰会降低9.5dB,如果减小为原来的10倍,则会降低20 dB。设计时,好从小化图4和图5所示的两个回路节点的回路面积着手,细致考虑器件的布局问题,同时注意铜线连接问题。尽量避免同时使用PCB的两面,因为通孔会使电感显着增高,进而带来其他问题。

恰当放置高频输入和输出电容器的重要性常被忽略。若干年以前,我所在的公司曾把我们的产品设计转让给国外制造商。结果,我的工作职责也发生了很大变化,我成了一名顾问,帮助电源设计新手解决文中提到的一系列需要权衡的事宜及其他众多问题。这里有一个含有集成镇流器的离线式开关的设计例子:设计人员希望降低终功率级中的电磁干扰。我只是简单地将高频输出电容器移动到更靠近输出级的位置,其回路面积就大约只剩原来的一半,而电磁干扰就降低了约 6dB。而这位设计者显然不太懂得其中的道理,他称那个电容为“魔法帽子”,而事实上我们只是减小了开关节点的回路面积。

还有一点至重要的,新改进的电路产生的问题可能比原先的还要严重。换句话说,尽管延长过渡时间可以减少电磁干扰,但其引起的热效应也随之成为重要的问题。有一种控制电磁干扰的方法是用全集成电源模块代替传统的直流到直流转换器。电源模块是含有全集成功率晶体管和电感的开关稳压器,它和线性稳压器一样可以很轻松地融入系统设计中。模块开关节点的回路面积远小于相似尺寸的稳压器或控制器,电源模块并不是新生事物,它的面世已经有一段时间了,但是直到现在,由于一系列问题,模块仍无法有效散热,且一经安装后就无法更改。

9电源模块的技术应用编辑
电源模块结合了大部分必要的组件,以提供即插即用的解决方案,取代了40多种不同的元器件。这种整合可简化并加速系统的设计,它也能明显减少电源管理部分所占的电路板面积。为了达到所需要的电压精度,这些电源模块一般放在电路板上需要供电的芯片电路附近。但是随着系统的复杂程度的提高,更大电流、更低电压和更高频率的系统中,布局更显重要。

福建石屹科技有限公司为你提供的“1756-BATA,控制器CPU模块驱动”详细介绍
在线留言

推荐信息

电工电气>控制设备及附>1756-B
信息由发布人自行提供,其真实性、合法性由发布人负责;交易汇款需谨慎,请注意调查核实。
触屏版 电脑版
@2009-2024 京ICP证100626