通过对油田污水处理系统各级污水处理设备的分析,发现了撇油罐是影响外排水质量的主要因素,进而对撇油罐结构、原理及工艺过程进行了分析,找出了影响撇油罐除油效率的主要原因,将浅池理论与聚结技术相结合,并考虑流体变化因素,将撇油罐进料整流板改造为侧向波纹板聚结分离器,同时将清水槽固定堰板改造为可调活动堰板,改造后效果良好,配合其它污水处理设施,将外排生产水OIW(水中含油量)降至20mg·L-1以下,达到了海洋石油勘探开发污染物排放浓度限值(GB4914-2008)中的海域排放标准,环保效益与社会经济效益显著。
集水槽的材质、制作和安装工艺跟水质、水量、池容貌有着直接关系。因此选用合适的材料,采用的设备和制造工艺,使其达到水平且美观大方已越来越被水界所重视。传统集水槽一般采用普通钢板焊制,或以混凝土为槽体、塑料板材作堰板,但这些材料和制作工艺均存在着不同弊病:普通钢板易锈蚀而影响出水水质;塑料堰板强度低、易老化变形,使其不能随意调整水平精度,导致在运行过程中不能均衡集水;混凝土槽体表面粗糙、占池体积大、易滋生青苔;玻璃钢复合集水槽难以达到卫生要求。针对传统集水槽的上述弊病,为提供给排水好、美观的集水槽,好的不锈钢为选择材质。
平流式沉淀池出水端采用条形孔式或齿形式集水槽、圆形澄清池采用环绕槽或配置辐射槽、污水厂终沉池采用圆形集水槽。
随着我国的经济建设持续发展,对电力的需求不断加大。国内火力发电厂百万机组新建工程陆续增多,超大型自然通风冷却塔逐渐受到火力发电相关人士的重视。根据国家节能减排、低碳经济的要求,具有明显节能、降噪优势的高位水收水冷却塔具有广阔的应用前景,尤其是随着高位收水冷却塔逐步国产化后,其优势更加明显。高位收水冷却塔不同于常规湿冷塔之处主要在于取消了常规湿冷却塔底部的集水池和雨区,而在填料层底部直接采用高位收水装置。
集水槽为地面式钢筋混凝土结构,百万机组集水槽的高度在14 ~23 m,根据高位收水冷却塔淋水构架的柱网间距,沿集水槽纵向布置暗框架,暗框架顶梁上搁置单层配水槽,暗框架沿高度方向从上至下一定间距设置拉梁。暗框架与集水槽形成一个整体,共同受力。
集水槽主要承受集水槽内的内水压力作用,其次是单层配水槽传来的集中荷载及风荷载。内水压力随水深增加,压力越大,在内水压力作用下,集水槽壁板同时承受弯矩与拉力作用。采用传统平面假定方法不易准确计算出集水槽壁板承受的拉力,且不能根据水压力的特点进行变截面设计,同时忽略了暗框架与集水槽壁板作为一个整体,共同承受内水压力。
对于集水槽的桩基布置,传统的竖向荷载平均法计算出的桩数偏多,不易准确计算出桩承受的水平力。由集水槽结构形式及受力特点分析可以看出,集水槽各部分构件之间是相互协同作用,共同承受集水槽内水压力及其他荷载。平面假定简化计算只能顾此失彼,不能进行整体计算。因此,为准确真实地模拟集水槽结构整体受力的特性,满足结构优化设计的目的,集水槽的结构设计有必要采用三维有限元整体分析计算。
二沉池是城市污水生物处理工艺中很重要的一个污水处理单元,其主要的作用是促进泥水、固液分离,同时提高回流污泥、剩余污泥浓度。二沉池设计和运行过程中的影响因素很多,如二沉池池型、进水形式、表面积、池深、集水槽处的溢流堰上负荷以及污水的温度、污泥自身的沉降性能等等。就池型及构造而言,二沉池有辐流式、平流式、竖流式3种,池型有圆形、方形,而圆形辐流式二沉池是当前污水生物处理中常见的一种形式。
二沉池集水槽是污水沉淀过程中泥水、固液分离的后一道环节和工序,在实际的工程设计中,常见有3种布置形式: 内置双侧堰式、内置单侧堰式、外置单侧堰式 。内置单侧堰式、外置单侧堰式均为单侧堰进水,设计堰上负荷基本一致,从构造和水力条件来看,两者没有明显的优劣之分。内置双侧堰式的集水槽因堰上负荷小、出水水质好而应用较多。 但在近的工程设计与应用中发现双侧堰进水集水槽主要存在2个现象: