tpep防腐钢管生产厂家联系人:董经理
所有这些技术比较或者建议并非是对工业大数据应用前景和价值的否定,而是针对工业问题给出合适的技术方法和路径。尽管与社会领域大数据应用存在诸多差异,但仍然可以选择一些领域开展工业大数据的研究和应用。
笔者建议在传统方法难以满足要求的领域或者利于发挥数据长处的领域开展。这些领域有:①钢铁全产线产品质量分析与监管;②设备诊断;③缺陷图像数据处理与分类;④基于大数据的能源整体调度优化;⑤基于制造大数据的智能采购;⑥基于市场与制造大数据的预测式制造系统;⑦基于大数据的销售决策支持;⑧成本大数据应用;⑨工序间数据建模与决策。
其中,①②④是已经长期利用数据进行工作的领域,是被证实数据应用可行且没有更好的方法可用的领域;③是把图像问题转化为数据后可以称之为大数据应用的领域,其本质依然是图像处理,其方法也是围绕图像处理技术而进行,只是大数据建模技术被认为是有前景的新方法之一;⑤~⑧是笔者较为推荐的所谓“薄而宽”的数据应用领域,宝钢数年来的实践证明了其价值和技术经济可行性,而制造环节的智能化很多是智能优化技术与大数据的结合,前者是难点与核心,故未列入;⑨则是由于大型钢厂过程计算机建设的分工设计特征决定了工序间信息的利用是一个先天的薄弱环节,传统方法是通过一系列工艺设定值来维系上下游工序间的信息衔接与传递,所以在工序间利用实际数据分析和建模可以起到补充和完善的作用。