在焊接过程中,利用高速电子束束流偏离来打出立的多孔,其间电子束偏离以及多溶池焊接过程中的电子束混合尤为重要。控制软件和控制束流方向的偏离板对焊缝的复杂的曲线热分布的控制起到了关键的作用。只有非常熟练的控制才能完成包括飞机设计的复杂任务。因此,人员用电子束焊接机来设计完成特殊的任务。
直到近,电子束焊接都被认为是一个非常复杂的过程,不容易控制。但是现代化的工厂和控制技术使其易于操作,使得工业界越来越多地转向该技术,因为它提供了许多优势,特别是在以前被认为难以焊接的应用领域。
电子束过程产生深、平行且狭窄的焊缝。角变形和横向收缩以及其他干扰的影响是小的。它的应用范围非常广泛,包括从焊接小的部件到接合单次操作壁厚超过150mm的工件。这些优点还有利于机械部件的设计、航空航天工业中单个部件的加工、建造船只和新能源车以及汽车大批系列的生产。
焊接过程在真空中进行并且利用电子能量的转移,当电子变慢的时候,电子撞击物质时释放出热量。周围的材料大部分还维持较低的温度。深度焊接效果可确保细长、平行且深接缝超过 150 mm。在能量密度超过106 W/cm2时,熔融材料在中心蒸发,这使得液体材料周围产生毛细管状的蒸汽。
与电子束焊接一样,电弧焊接工艺近年来也大有发展。相比之下,电子束焊接的成本几乎与焊接材料无关,因为不需要填料材料。辅助工艺成本基本限于功耗,与其他聚变焊接工艺相比,功耗非常低。此外,无需任何气体或相应的粉末来保护焊池,因为工艺产生的真空可提供佳的边界条件。
高压电源是双金属锯带焊接设备的关键技术之一,它主要为电子枪提供加速电压,其性能好坏直接决定电子束焊接工艺和焊接质量。为此许多电子束焊机制造商及研究机构均对高压电源的可靠性、高压保护、高压打火对焊件的影响进行了研究,并相应制造出具有较的高压电源,以满足不同的电子束焊机的需要。