人脸识别系统的研究始于20世纪60年代,80年代后随着计算机技术和光学成像技术的发展得到提高,而真正进入初级的应用阶段则在90年后期,并且以美国、德国和日本的技术实现为主;人脸识别系统成功的关键在于是否拥有的核心算法,并使识别结果具有实用化的识别率和识别速度;“人脸识别系统”集成了人工智能、机器识别、机器学习、模型理论、系统、视频图像处理等多种技术,同时需结合中间值处理的理论与实现,是生物特征识别的新应用,其核心技术的实现,展现了弱人工智能向强人工智能的转化。
人脸识别系统主要包括四个组成部分,分别为:人脸图像采集及检测、人脸图像预处理、人脸图像特征提取以及匹配与识别。
人脸图像采集及检测
人脸图像采集:不同的人脸图像都能通过摄像镜头采集下来,比如静态图像、动态图像、不同的位置、不同表情等方面都可以得到很好的采集。当用户在采集设备的拍摄范围内时,采集设备会自动搜索并拍摄用户的人脸图像。
人脸图像预处理:对于人脸的图像预处理是基于人脸检测结果,对图像进行处理并终服务于特征提取的过程。系统获取的原始图像由于受到各种条件的限制和随机干扰,往往不能直接使用,在图像处理的早期阶段对它进行灰度校正、噪声过滤等图像预处理。对于人脸图像而言,其预处理过程主要包括人脸图像的光线补偿、灰度变换、直方图均衡化、归一化、几何校正、滤波以及锐化等。
人脸识别主要用于身份识别。由于视频监控正在快速普及,众多的视频监控应用迫切需要一种远距离、用户非配合状态下的快速身份识别技术,以求远距离快速确认人员身份,实现智能预警。人脸识别技术无疑是佳的选择,采用快速人脸检测技术可以从监控视频图象中实时查找人脸,并与人脸数据库进行实时比对,从而实现快速身份识别。
人脸识别技术广泛地应用于日常生活中,如相机拍摄,图片对比等,尤其近两年来,相亲节目如火如荼,其中浙江电视台的爱情连连看中的佳像环节就利用了人脸对比技术来测试男女主人公面相的相似程度。
人脸识别考勤应用
人脸识别考勤系统,能有效提高企业的考勤管理方式,规范员工考勤操作,防止出现代打卡、弄虚作行为,也方便有效的提高考勤效率。同时支持TCP/IP联网方式,考勤数据自动上传管理部门,管理考勤数据。广泛适用于企事业单位、中小学教育机构、酒店、会所、等。
综上所述,具备环保节能特征是安防产品将受到制造厂商与消费者的青睐,因为其不仅满足了人们对“环保与高度安全”的需求,而且识别率高、简单易用,为各种环境的安防提供了理想的解决方案。除上述的新颖指纹识别总体设计方案与非接触,防人脸识别考勤机是的典例外,又如智能视分析模块及应用等多种安防技术与产品的开发,相信在不久的将来,将得到更广泛的应用。