污泥烘干机能够将含水量在80%以上的污泥降低到20%以下,体积能够变为原来的五分,方便了运输和储存;通过脱水,干化,杀菌,除臭从而使得污泥得到循环利用。可以使用生活污泥、印染污泥、污水处理厂污泥、城市污泥、造纸污泥、医药污泥、电镀污泥等活性污泥干燥工艺。
污泥烘干干化主要的目的在于减量,即将处理前的含水量通过技术手段,将污泥中的水份排掉,为后期的处理做准备。如果不对污泥进行干化,物料运输过程除了造成污染外中会产生大量的运输成本。第二个问题在加工能耗时候,水份的二次蒸发式一定消耗能源的。所以说污泥脱水干化是污泥资源化利用的重要环节。传统的方式就是通过热风炉等方式进行加热、排湿、烘干。这样的方式是比较简单,但能源消耗非常的大,同时对环境等污染也是非常大的。目前在这个领域中,我们现在使用的是现进的热泵的解决方法,将高湿的热空气中水份冷却为液态蒸馏水的时候将热量转移到前端的烘干干化过程,从而实现的目的。
热泵除湿干燥是利用制冷系统使来自干燥室的湿空气降温脱湿同时通过热泵原理回收水分凝结潜热加热空气达到干燥物料目的。热泵除湿干燥是除湿(去湿干燥)加热泵(能量回收)结合,是干燥过程中能量循环利用。热泵除湿干燥与传统冷热风干燥的区别在于空气循环方式不同,干燥室空气降湿的方式也不同。热泵除湿干燥时空气在干燥室与除湿干燥机间进行闭式循环;
热泵除湿干燥回热循环是在热泵除湿干燥机内增加回热器(即气-气板式热交换器),让烤房流出的部分循环高温气流进入加热器与流经蒸发器的低温气流进行热交换,高温气流经热交换器后热量被低温气流吸收温度降低,其的露点温度也随这降低蒸发器吸收相同的热量情况会将会有更多的凝结水产生除湿效果大大提高,除湿后的低温气流又从循环的高温气流吸收热量温度升高,使进入冷凝器的温度上升,减小了冷凝器的热负荷。
回热循环使蒸发器冷量用于空气降温减少(无效耗冷过程),而用于降温除湿过程冷量增加,使热泵干燥的蒸发温度及除湿量上升;增加回热循环的热泵除湿干燥比普通热泵干燥节能30%以上。
板式热交换芯体为空气与空气通过导热平板进行能量交换的热 交换器,以两股气流存在温度差时,就会发生热传递为原理而运行。两 股气流完全分开,避免了任何气味和水分的传递,两股气流进入热交 换芯体,能量通过平板进行热交换,即较热的一侧传递到较冷的一侧, 从而达到能量回收的目的。热交换芯体采用耐海水腐蚀的亲水涂 层铝箔做传热导体,导热快,不会产生二次污染,效果好。根据使用环 境工况亦可环氧树脂涂层铝箔和不锈钢箔。根据空气流道不同可分为 叉流型、逆流型和交叉逆流型。模块结构,没有运动部件,设备维护费 用少。可采用自来水或中性洗涤液直接清洗,使用方便,维护简单。
热交换器工作原理:设备采用静止叉流式换热芯体,芯体以亲水铝箔为载体,由数层换热单元体组成, 相邻两层单元体之流体的流道呈正交叉布置,其原理是导入的高温循环气流及流经蒸发器的低温气流两股空气,呈正交叉的方式流过换热芯体,热量从高温侧通过传热隔板传递到低温侧从而进行热交换,经过热交换的低温气流成为热风,再与其余高温循环空气混合。
高温高湿气流从进风口进入除湿机,由风机牵引作用下在热交换芯体中与蒸发器流出的干冷气流进行热交换,高温气流温度下降至接近露点温度,使进入蒸发器的空气温度下降蒸发器冷量用于空气降温减少(无效耗冷过程),而用于降温除湿过程冷量增加,达到预冷的效果实现减小蒸发器热负荷。
从蒸发器流出的干冷的气流与高温高湿的空气热交换后,干冷的气流温度提高,达到预热进入冷凝器气流的效果,如此一来便又可减少冷凝器冷负荷,达到双向收益的效果。