日本熊本大学镁国际研究中心与东邦金属公司和福田金属箔粉工业公司共同制造出了直径仅30微米(0.03毫米)的超细镁合金金属丝,大幅更新了镁合金金属丝直径的细世界记录。 而且,此次制造的超细金属丝还打破了以往的常识,大幅更新了超细镁合金金属丝的机械强度记录,具备令人吃惊的788MPa机械强度(屈服强度)。 镁在实用金属中为重量轻的金属。 与其他金属相比,镁用于人体时的安全性比较高,而且具备终能在体内分解吸收的特性,因此作为体内植入型医疗器械用材料得到了全世界的广泛关注。 实际的体内植入型医疗器械需要使用直径30微米的镁合金金属丝,但凭借以前的技术,50微米已达到极限。
AZ系列合金AZ91具有良好的铸造性能和高的屈服强度,其压铸件广泛应用于汽车座椅、变速箱外壳等多种形式部件。AM系列合金AM50、AM60具有较高的延伸率和韧性,用于抗冲击载荷、安全性高的场合如车轮、车门等。AS系列的镁合金AS41、AS21和AE系列的AFA2是20世纪70年代开发的耐热压铸镁合金。
镁合金压铸中广泛采用冷、热室压铸方法。一般薄壁铸件采用热室压铸机,厚壁铸件采用冷室压铸机。镁合金热室压铸机是目前国外使用数量多的镁合金压铸设备,具有生产,浇注温度低,注型寿命长,易实现熔体保护等特点。主要缺点是设备成本和维修费用较高。
镁合金压铸时,合金液冲填压型时的高速湍流运动,使腔内气体无法排出,会导致组织疏松,甚至铸件表面鼓包或变形。压铸工艺参数如压力、速度、熔体温度、模具温度等对铸件性能都有显着影响。许多新压铸方法,包括真空压铸、充氧压铸和挤压铸造等一定程度上克服了以上缺点,减少了铸件组织疏松和气孔等缺陷,提高了铸件致密度。美国俄亥俄州精密成型公司C.Rozak介绍了镁合金的金属压缩成型技术(MCF)在整个铸件表面加压的成型方法,在压力下凝固,改善了微观组织,减少了晶粒尺寸和孔隙率,铸件致密均匀,可用于生产性能要求高、形状复杂的铸件。
消失模铸造是一种近无余量、成型的新型铸造技术,它具有许多的优点,如,型砂不需要粘结剂、铸件落砂及砂处理系统十分简便,容易实现清洁生产;铸件没有分型面及起模斜度,可使铸件的结构高;加工装配时间减少,铸件成本可下降10%—30%等等。
初步试验研究表明,镁合金的特点非常适合消失模铸造工艺,因为镁合金的消失模铸造除具有以上特点外,还具有如下特的优点:
①镁合金在浇注温度下,泡沫模样的分解产物主要为烃类、苯类和苯乙烯等气雾物质,它们对冲型成型时极易氧化的液态镁合金具有自然的保护作用;
②采用干砂负压造型避免了镁合金液与型砂中水分的接触和由此而引起的铸件缺陷;
③与目前普遍采用的镁合金压铸工艺相比较,其投资成本大为降低,干砂良好地退让性减轻了镁合金凝固收缩时的热裂倾向;金属液较慢和平稳的充型速度避免了气体的卷入,使铸件可经热处理进一步提高其力学性能。所以,镁合金的消失模铸造具有较的应用前景。
目前镁合金的塑性成形过程主要为锻造和挤压,少量为轧制成形,且均需采用热加工方式。因此,变形温度是重要参数,同时变形速率和应力状态也是重要的考虑因素。
1)锻压成形:镁合金锻造性能取决于3个因素:合金的凝固温度、变形速率及晶粒大小。为了良好的加工性能采用具有可锻性的AZ和ZK系镁合金坯料或坯棒。这两系合金可通过添加晶粒细化剂和合金元素得到满意的晶粒尺寸。但铸造组织的晶粒度一般不符合锻造要求,须先将铸锭加以挤压,得到锻造所需晶粒尺寸,再以高变速率锻造成形。镁合金在其固相线温度以下55℃范围内进行锻造,锻造温度过低可能形成裂纹。液压机和低速机械压力机是其模锻的常用设备。
2)挤压成形:镁合金可以挤压成各种管材、棒材和型材。包括带凹角和暗槽的型材,大直径和变截面厚度的薄壁管等难加工的产品。挤压材料也是AZ和ZK系镁合金,温度一般控制在300℃—460℃之间,具体温度的选择还和特定的合号和挤压形状有关。因为镁在变形过程中会产生大量热,所以挤压过程中充分冷却,否则合金温度可能超过固相线温度而导致开裂。
半固态成形技术,是在金属凝固过程中,将结晶过程控制在固—液两相共存温度,并通过剧烈搅拌破碎枝晶组织,从而获得一种金属母液中悬浮一定固相成分的固—液?昆合浆料,再采用压铸、模锻等成形加工工艺进行的金属成形技术。半固态加工,是一种新型、的工艺方法,与传统液态铸造成形相比,具有成形温度低(镁合金可降低100℃左右),延长模具的寿命,改善生产条件和环境,细化晶粒,减少气孔、缩孔,提高组织致密性,提高铸件质量等优点,被认为是21世纪具有发展前景的精密成形技术之一。根据工艺流程的不同,半固态成形通常分为流变铸造(Rheocasting)和触变铸造(Thixocasting)两类:流变铸造是对冷却过程中的金属液进行搅动,将形成的固相枝晶破碎,形成一定固相分数的半固态金属浆料,然后将浆料注入压铸机或挤压机内成形(俗称“一步法”);而触变铸造是先由连铸等方法制得具有半固态金属组织的锭坯,然后切成所需长度,用二次加热装置再加热到半固态状态,后移送至压铸机等再压铸或挤压成形(俗称“两步法”)。
半固态成形过程一般包括非枝晶组织的制备、二次加热和半固态成形3个步骤。制备非枝晶组织的坯料是半固态成形的前提,机械搅拌法是早采用的方法,其设备构造简单,但工艺参数不易控制,很难产品质量的一致性。目前工业化生产中,应用为广泛的方法有:电磁搅拌法、应变诱发熔化激活法(SIMA)和半固态等温热处理法(SSIT)以及化学晶粒细化法等。
3.1电磁搅拌法
利用电磁感应在凝固的金属液中产生感应电流,感应电流在外加磁场的作用下促使金属固液浆料激烈地搅动,使传统的枝晶组织转变为非枝晶组织。一般用于生产直径不大于150mm的棒坯。该方法在很大程度上克服了机械搅拌的缺点,可实现连铸,生产,是目前工业化生产中应用为广泛的一种方法。
3.2应变诱发熔化激活法(SIMA)
预先连续铸造出晶粒细小的合金锭,再将合金铸锭进行足够的预变形,然后加热到半固态。在加热过程中,先发生预变形,然后部分熔化,使初生相转变成颗粒状,形成半固态合金材料。此方法对制备较高熔点的非枝晶组织合金具有特的性,但只能制备直径小于60mm的坯料。
3.3半固态等温热处理法
在合金熔融状态时加人变质元素,进行常规铸造,然后把锭坯重新加热到固液两相区进行保温处理(半固态等温热处理),终获得具有触变性的非枝晶组织。主要工艺参数有添量元素的种类、加入量、半固态等温温度和保温时间等。
3.4化学晶粒细化法
是近几年开发的新方法。通过添加晶粒细化剂或变质剂,增加外来晶粒数量或改变结晶方式来细化晶粒组织,使生产的锭坯适合于半固态铸造。据报道,挪威NorskHydro公司已经通过化学晶粒细化法与特殊的凝固条件结合制备了镁合金AZ91的细晶粒铸锭。
半固态触变成形之前,先要进行局部重熔(二次加热)。应根据加工零件大小分割具有非枝晶组织的坯料,然后将其加热到半固态温度后再进行成形加工。其目的一是为了获得不同工艺所需的固相体积分数,二是将有些工艺(电磁搅拌,化学晶粒细化法等)获得的细小枝晶碎片逐渐长大,并转化成球状结构,从而为触变成形创造有利条件。