崇文收购钴酸锂二次利用

  • 图片0
  • 图片1
  • 图片2
  • 图片3
  • 图片4
  • 图片5
1/6
新浪微博
QQ空间
豆瓣网
百度新首页
取消

体相掺杂能够稳定材料结构,抑制不可逆相变,提高材料循环性能。体相掺杂包含:(1)阳离子掺杂:阳离子通常指价态不正三价的离子,主要有锂空位、锂离子、镁离子、铝离子、锆离子等。A.R.West等[8]将镁离子引入到钴酸锂中,认为镁离子掺杂更倾向于钴的位置,使得钴的价态提高,产生一种导入型P型半导体掺杂,同时产生部分锂空位,能够在一定程度上提高电子电导,其研究成果对后续镁离子掺杂起到引导作用

Delmas等[9]认为只有镁掺杂达到一定的量才能形成连续通道,表现出金属特性区域,才会反应出电子电导提升的现象。目前,二价镁离子是工业生产成功掺杂元素之一。三价元素掺杂,主要分为无化学活性的硼、铝、铱,有化学活性的锰、镍、铬等元素。

Gopukumar等[12]发现适量的钛掺杂能提高材料的放电比容量,同时钛元素的掺杂后能降低钴的平均价态,提高材料循环稳定性。YongseonKim等[13]通过性原理计算及实验验证,钛元素不容易掺杂到钴酸锂晶格,更容易富集在材料表面;(3)共掺杂:Zhang Jie Nan等[14]采用钛、镁、铝痕量元素共掺杂

多种元素共掺杂越发成为高压钴酸锂掺杂改性的一个发展方向。图5为同步辐射X射线三维成像技术揭示铝(a、d),钴(b、e)及钛(c、f)元素在LiCoO2颗粒中的空间分布;(g)为可视化子域;(h)为子域和整个粒子作为一个整体的体积和表面积的量化;(i)为所有子域的体积分布。

(2)一次颗粒的晶体形貌:通过控制合成条件改变晶体的优势生长方向、晶粒大小、晶粒堆积方式。这一层面的优化可以优化电化学活性/惰性界面的面积、应力释放路径、锂离子扩散路径,从而提升电池的倍率性能、循环稳定性和能量密度等;

(4)材料的表界面化学:主要指颗粒表界面共包覆、颗粒浅层元素浓度梯度化、表界面化学稳定化,这种优化可以提升材料高温存储性能及安全性能。
由于3C及其他领域对电池的能量密度要求越来越高,快速充电越发流行,钴酸锂必然朝着更高电压、更大倍率方向发展。高压钴酸锂的难点主要集中在以下几个方面:

河北绍谦机械设备销售有限公司为你提供的“崇文收购钴酸锂二次利用”详细介绍
在线留言

*详情

*联系

*手机

推荐信息

物资回收/销>崇文收购钴酸
信息由发布人自行提供,其真实性、合法性由发布人负责;交易汇款需谨慎,请注意调查核实。
触屏版 电脑版
@2009-2024 京ICP证100626