fpc四层板

  • 图片0
  • 图片1
  • 图片2
  • 图片3
  • 图片4
  • 图片5
1/6
新浪微博
QQ空间
豆瓣网
百度新首页
取消

PCB线路板铜箔的基本知识
一、铜箔简介


  Copper foil(铜箔):一种阴质性电解材料,沉淀于线路板基底层上的一层薄的、连续的金属箔,它作为PCB的导电体。它容易粘合于绝缘层,接受印刷保护层,腐蚀后形成电路图样。Copper mirror test(铜镜测试):一种助焊剂腐蚀性测试,在玻璃板上使用一种真空沉淀薄膜。



  铜箔由铜加一定比例的其它金属打制而成,铜箔一般有90箔和88箔两种,即为含铜量为90%和88%,尺寸为16*16cm。铜箔是用途广泛的装饰材料。如:宾馆酒店、寺院佛像、金字招牌、瓷砖马赛克、工艺品等。



二、产品特性


  铜箔具有低表面氧气特性,可以附着与各种不同基材,如金属,绝缘材料等,拥有较宽的温度使用范围。主要应用于电磁屏蔽及抗静电,将导电铜箔置于衬底面,结合金属基材,具有优良的导通性,并提供电磁屏蔽的效果。可分为:自粘铜箔、双导铜箔、单导铜箔等。



  电子级铜箔(纯度99.7%以上,厚度5um-105um)是电子工业的基础材料之一电子信息产业快速发展,电子级铜箔的使用量越来越大,产品广泛应用于工业用计算器、通讯设备、QA设备、锂离子蓄电池,民用电视机、录像机、CD播放机、复印机、电话、冷暖空调、汽车用电子部件、游戏机等。国内外市场对电子级铜箔,尤其是电子级铜箔的需求日益增加。有关机构预测,到2015年,中国电子级铜箔国内需求量将达到30万吨,中国将成为世界印刷线路板和铜箔基地的大制造地,电子级铜箔尤其是箔市场看好。



三、铜箔的全球供应状况


  工业用铜箔可常见分为压延铜箔(RA铜箔)与点解铜箔(ED铜箔)两大类,其中压延铜箔具有较好的延展性等特性,是早期软板制程所用的铜箔,而电解铜箔则是具有制造成本较压延铜箔低的优势。由于压延铜箔是软板的重要原物料,所以压延铜箔的特性改良和价格变化对软板产业有一定的影响。



  由于压延铜箔的生产厂商较少,且技术上也掌握在部份厂商手中,因此客户对价格和供应量的掌握度较低,故在不影响产品表现的前提下,用电解铜箔替代压延铜箔是可行的解决方式。但若未来数年因为铜箔本身结构的物理特性将影响蚀刻的因素,在细线化或薄型化的产品中,另外高频产品因电讯考量,压延铜箔的重要性将再次提升。



  生产压延铜箔有两大障碍,资源的障碍和技术的障碍。资源的障碍指的是生产压延铜箔需有铜原料支持,占有资源十分重要。另一方面,技术上的障碍使更多新加入者却步,除了压延技术外,表面处理或是氧化处理上的技术亦是。全球性大厂多半拥有许多技术专利和关键技术Know How,加大进入障碍。若新加入者采后处理生产,又受到大厂的成本拑制,不易成功加入市场,故全球的压延铜箔仍属于强占性的市场。



四、铜箔的发展情况


  铜箔英文为electrodepositedcopperfoil,是覆铜板(CCL)及印制线路板(PCB)制造的重要的材料。在当今电子信息产业高速发展中,电解铜箔被称为:电子产品信号与电力传输、沟通的“神经网络”。2002年起,中国印制线路板的生产值已经越入世界第3位,作为PCB的基板材料——覆铜板也成为世界上第3大生产国。由此也使中国的电解铜箔产业在近几年有了突飞猛进的发展。为了了解、认识世界及中国电解铜箔业发展的过去、现在,及展望未来,据中国环氧树脂行业协会特对它的发展作回顾。



  从电解铜箔业的生产部局及市场发展变化的角度来看,可以将它的发展历程划分为3大发展时期:美国创建初的世界铜箔企业及电解铜箔业起步的时期;日本铜箔企业全面垄断世界市场的时期;世界多极化争夺市场的时期。

PCB线路板沉金与镀金工艺的区别

在PCB生产中,沉金和镀金都是表面处理的一种,那么, PCB线路板沉金工艺与镀金工艺都有哪些优劣性呢?

镀金,一般指的是“电镀金”、“电镀镍金”、“电解金”等,有软金和硬金的区分(一般硬金是用于金手指的),原理是将镍和金(俗称金盐)溶化于化学药水中,将线路板浸在电镀缸内并接通电流而在电路板的铜箔面上生成镍金镀层,电镍金因镀层硬度高,耐磨损,不易氧化的优点在电子产品中得到广泛的应用。

沉金是通过化学氧化还原反应的方法生成一层镀层,一般厚度较厚,是化学镍金金层沉积方法的一种,可以达到较厚的金层。

沉金与镀金的区别:

1、沉金与镀金所形成的晶体结构不一样,沉金对于金的厚度比镀金要厚很多,沉金会呈金黄色,较镀金来说更黄(这是区分镀金和沉金的方法之一)。

2、沉金比镀金更容易焊接,不会造成焊接不良。

3、沉金板的焊盘上只有镍金,信号的趋肤效应是在铜层上传输,不会对信号产生影响。

4、沉金比镀金的晶体结构更致密,不易产生氧化。

5、镀金容易使金线短路。而沉金板的焊盘上只有镍金,因此不会产生金线短路。

6、沉金板的焊盘上只有镍金,因此导线电阻和铜层的结合更加牢固。

7、沉金板的平整性与使用寿命较镀金板要好。



以上便是 PCB线路板沉金工艺与镀金工艺的区别。

什么是HDI线路板
一.什么是HDI板?
HDI板(High Density Interconnector),即高密度互连板,是使用微盲埋孔技术的一种线路分布密度比较高的电路板。HDI板有内层线路和外层线路,再利用钻孔、孔内金属化等工艺,使各层线路内部实现连结。
二.HDI板与普通pcb的区别
HDI板一般采用积层法制造,积层的次数越多,板件的技术档次越高。普通的HDI板基本上是1次积层,高阶HDI采用2次或以上的积层技术,同时采用叠孔、电镀填孔、激光直接打孔等PCB技术。当PCB的密度增加超过八层板后,以HDI来制造,其成本将较传统复杂的压合制程来得低。
HDI板的电性能和讯号正确性比传统PCB更高。此外,HDI板对于射频干扰、电磁波干扰、静电释放、热传导等具有更佳的改善。高密度集成(HDI)技术可以使终端产品设计更加小型化,同时满足电子性能和效率的更高标准。
HDI板使用盲孔电镀 再进行二次压合,分一阶、二阶、三阶、四阶、五阶等。一阶的比较简单,流程和工艺都好控制。二阶的主要问题,一是对位问题,二是打孔和镀铜问题。二阶的设计有多种,一种是各阶错开位置,需要连接次邻层时通过导线在中间层连通,做法相当于2个一阶HDI。第二种是,两个一阶的孔重叠,通过叠加方式实现二阶,加工也类似两个一阶,但有很多工艺要点要特别控制,也就是上面所提的。第三种是直接从外层打孔至第3层(或N-2层),工艺与前面有很多不同,打孔的难度也更大。对于三阶的以二阶类推即是。

在PCB打样中,HDI造价较高,故一般的PCB打样厂家都不愿意做。捷多邦可以做别人不愿意做的HDI盲埋PCB板。现阶段,捷多邦采用的HDI技术已突破高层数为20层;盲孔阶数1~4阶;小孔径0.076mm,工艺为激光钻孔.
三.HDI板的优势
这种PCB在突显优势的基础上发展迅速:
1.HDI技术有助于降低PCB成本;
2.HDI技术增加了线密度;
3.HDI技术有利于使用的包装;
4.HDI技术具有更好的电气性能和信号有效性;
5.HDI技术具有更好的可靠性;
6.HDI技术在散热方面更好;
7.HDI技术能够改善RFI(射频干扰)/EMI(电磁干扰)/ESD(静电放电);
8.HDI技术提高了设计效率;
四.HDI板的材料
对HDI PCB材料提出了一些新的要求,包括更好的尺寸稳定性,抗静电移动性和非胶粘剂。HDI PCB的典型材料是RCC(树脂涂层铜)。RCC有三种类型,即聚酰亚胺金属化薄膜,纯聚酰亚胺薄膜,流延聚酰亚胺薄膜。
RCC的优点包括:厚度小,重量轻,柔韧性和易燃性,兼容性特性阻抗和的尺寸稳定性。在HDI多层PCB的过程中,取代传统的粘接片和铜箔作为绝缘介质和导电层的作用,可以通过传统的抑制技术用芯片抑制RCC。然后使用非机械钻孔方法如激光,以便形成微通孔互连。
RCC推动PCB产品从SMT(表面贴装技术)到CSP的发生和发展(芯片级封装),从机械钻孔到激光钻孔,促进PCB微通孔的发展和进步,所有这些都成为RCC的HDI PCB材料。
在实际的PCB中在制造过程中,对于RCC的选择,通常有FR-4标准Tg 140C,FR-4高Tg 170C和FR-4和Rogers组合层压,现在大多使用。随着HDI技术的发展,HDI PCB材料满足更多要求,因此HDI PCB材料的主要趋势应该是:
1.使用无粘合剂的柔性材料的开发和应用;
2.介电层厚度小,偏差小;
3 .LPIC的发展;
4.介电常数越来越小;
5.介电损耗越来越小;
6.焊接稳定性高;
7.严格兼容CTE(热膨胀系数);
五.HDI板制造的应用技术
HDI PCB制造的难点在于微观通过制造,通过金属化和细线。
1.微通孔制造
微通孔制造一直是HDI PCB制造的核心问题。主要有两种钻井方法:
a.对于普通的通孔钻孔,机械钻孔始终是其率和低成本的佳选择。随着机械加工能力的发展,其在微通孔中的应用也在不断发展。
b.有两种类型的激光钻孔:光热消融和光化学消融。前者是指在高能量吸收激光之后加热操作材料以使其熔化并且通过形成的通孔蒸发掉的过程。后者指的是紫外区高能光子和激光长度超过400nm的结果。
有三种类型的激光系统应用于柔性和刚性板,即准分子激光,紫外激光钻孔,CO 2 激光。激光技术不仅适用于钻孔,也适用于切割和成型。甚至一些制造商也通过激光制造HDI。虽然激光钻孔设备成本高,但它们具有更高的精度,稳定的工艺和成熟的技术。激光技术的优势使其成为盲/埋通孔制造中常用的方法。如今,在HDI微通孔中,99%是通过激光钻孔获得的。
2.通过金属化
通孔金属化的大困难是电镀难以达到均匀。对于微通孔的深孔电镀技术,除了使用具有高分散能力的电镀液外,还应及时升级电镀装置上的镀液,这可以通过强力机械搅拌或振动,超声波搅拌,水平喷涂。此外,在电镀前增加通孔壁的湿度。
除了工艺的改进外,HDI的通孔金属化方法也看到了主要技术的改进:化学镀添加剂技术,直接电镀技术等。
3.细线
细线的实现包括传统的图像传输和激光直接成像。传统的图像转移与普通化学蚀刻形成线条的过程相同。
对于激光直接成像,不需要摄影胶片,而图像是通过激光直接在光敏膜上形成的。紫外波灯用于操作,使液体防腐解决方案能够满足高分辨率和简单操作的要求。不需要摄影胶片,以避免因薄膜缺陷造成的不良影响,可以直接连接CAD/CAM,缩短制造周期,使其适用于和多种生产。
六.结尾
硬件工程师刚接触多层PCB的时候,很容易看晕。动辄十层八层的,线路像蜘蛛网一样。
今天画了几张多层PCB电路板内部结构图,用立体图形展示各种叠层结构的PCB图内部架构。

图片高密度互联板的核心在过孔
多层PCB的线路加工,和单层双层没什么区别,大的不同在过孔的工艺上。
线路都是蚀刻出来的,过孔都是钻孔再镀铜出来的,这些做硬件开发的大家都懂,就不赘述了。
多层电路板,通常有通孔板、一阶板、二阶板、二阶叠孔板这几种。更高阶的如三阶板、任意层互联板平时用的非常少,价格贼贵,先不多讨论。
一般情况下,8位单片机产品用2层通孔板;32位单片机级别的智能硬件,使用4层-6层通孔板;Linux和Android级别的智能硬件,使用6层通孔至8一阶HDI板;智能手机这样的紧凑产品,一般用8层一阶到10层2阶电路板。

图片
8层2阶叠孔,高通骁龙624

只有一种过孔,从层打到后一层。不管是外部的线路还是内部的线路,孔都是打穿的,叫做通孔板。

图片

通孔板和层数没关系,平时大家用的2层的都是通孔板,而很多交换机和电路板,做20层,还是通孔的。
用钻头把电路板钻穿,然后在孔里镀铜,形成通路。
这里要注意,通孔内径通常有0.2mm、0.25mm和0.3mm,但一般0.2mm的要比0.3mm的贵不少。因为钻头太细容易断,钻得也慢一些。多耗费的时间和钻头的费用,就体现在电路板价格上升上了。
高密度板的激光孔
图片

这张图是6层1阶HDI板的叠层结构图,表面两层都是激光孔,0.1mm内径。内层是机械孔,相当于一个4层通孔板,外面再覆盖2层。
激光只能打穿玻璃纤维的板材,不能打穿金属的铜。所以外表面打孔不会影响到内部的其他线路。
激光打了孔之后,再去镀铜,就形成了激光过孔。
2阶HDI板 两层激光孔
图片

这张图是一个6层2阶错孔HDI板。平时大家用6层2阶的少,大多是8层2阶起。这里更多层数,跟6层是一样的道理。
所谓2阶,就是有2层激光孔。
所谓错孔,就是两层激光孔是错开的。
为什么要错开呢?因为镀铜镀不满,孔里面是空的,所以不能直接在上面再打孔,要错开一定的距离,再打上一层的空。
6层二阶=4层1阶外面再加2层。
8层二阶=6层1阶外面再加2层。
叠孔板 工艺复杂价格更高
图片

错孔板的两层激光孔重叠在一起。线路会更紧凑。
需要把内层激光孔电镀填平,然后再做外层激光孔。价格比错孔更贵一些。
超贵的任意层互联板 多层激光叠孔
就是每一层都是激光孔,每一层都可以连接在一起。想怎么走线就怎么走线,想怎么打孔就怎么打孔。

多层板PCB设计时的EMI解决
解决EMI问题的办法很多,现代的EMI抑制方法包括:利用EMI抑制涂层、选用合适的EMI抑制零配件和EMI仿真设计等。本文从基本的PCB布板出发,讨论PCB分层堆叠在控制EMI辐射中的作用和设计技巧。
电源汇流排

在IC的电源引脚附近合理地安置适当容量的电容,可使IC输出电压的跳变来得更快。然而,问题并非到此为止。由于电容呈有限频率响应的特性,这使得电容 无法在全频带上生成干净地驱动IC输出所需要的谐波功率。除此之外,电源汇流排上形成的瞬态电压在去耦路径的电感两端会形成电压降,这些瞬态电压就是主要 的共模EMI干扰源。我们应该怎麽解决这些问题?

就我们电路板上的IC而言,IC周围的电源层可以看成是优良的高频电容器,它可以收集为干净输出提供高频能量的分立电容器所泄漏的那部份能量。此外,优良的电源层的电感要小,从而电感所合成的瞬态信号也小,进而降低共模EMI。

当然,电源层到IC电源引脚的连线尽可能短,因为数位信号的上升沿越来越快,好是直接连到IC电源引脚所在的焊盘上,这要另外讨论。

为了控制共模EMI,电源层要有助于去耦和具有足够低的电感,这个电源层是一个设计相当好的电源层的配对。有人可能会问,好到什麽程度才算好?问题 的答案取决于电源的分层、层间的材料以及工作频率(即IC上升时间的函数)。通常,电源分层的间距是6mil,夹层是FR4材料,则每平方英寸电源层的等 效电容约为75pF。显然,层间距越小电容越大。

上升时间为100到300ps的器件并不多,但是按照目前IC的发展速度,上升时间在 100到300ps范围的器件将占有很高的比例。对于100到 300ps上升时间的电路,3mil层间距对大多数应用将不再适用。那时,有必要采用层间距小于1mil的分层技术,并用介电常数很高的材料代替FR4介 电材料。现在,陶瓷和加陶塑料可以满足100到300ps上升时间电路的设计要求。

尽管未来可能会采用新材料和新方法,但对于今天常见的1到3ns上升时间电路、3到6mil层间距和FR4介电材料,通常足够处理谐波并使瞬态信号足够低,就是说,共模EMI可以降得很低。本文给出的PCB分层堆叠设计实例将假定层间距为3到6mil。

电磁屏蔽

从信号走线来看,好的分层策略应该是把所有的信号走线放在一层或若干层,这些层紧挨著电源层或接地层。对于电源,好的分层策略应该是电源层与接地层相邻,且电源层与接地层的距离尽可能小,这就是我们所讲的“分层"策略。

PCB堆叠

什麽样的堆叠策略有助于屏蔽和抑制EMI?以下分层堆叠方案假定电源电流在单一层动,单电压或多电压分布在同一层的不同部份。多电源层的情形稍后讨论。

4层板

4层板设计存在若干潜在问题。,传统的厚度为62mil的四层板,即使信号层在外层,电源和接地层在内层,电源层与接地层的间距仍然过大。

如果成本要求是位的,可以考虑以下两种传统4层板的替代方案。这两个方案都能改善EMI抑制的性能,但只适用于板上元件密度足够低和元件周围有足够面积(放置所要求的电源覆铜层)的场合。

种为方案,PCB的外层均为地层,中间两层均为信号/电源层。信号层上的电源用宽线走线,这可使电源电流的路径阻抗低,且信号微带路径的阻抗也 低。从EMI控制的角度看,这是现有的佳4层PCB结构。第二种方案的外层走电源和地,中间两层走信号。该方案相对传统4层板来说,改进要小一些,层间 阻抗和传统的4层板一样欠佳。

如果要控制走线阻抗,上述堆叠方案都要非常小心地将走线布置在电源和接地铺铜岛的下边。另外,电源或地层上的铺铜岛之间应尽可能地互连在一起,以确保DC和低频的连接性。

6层板

如果4层板上的元件密度比较大,则好采用6层板。但是,6层板设计中某些叠层方案对电磁场的屏蔽作用不够好,对电源汇流排瞬态信号的降低作用甚微。下面讨论两个实例。

例将电源和地分别放在第2和第5层,由于电源覆铜阻抗高,对控制共模EMI辐射非常不利。不过,从信号的阻抗控制观点来看,这一方法却是非常正确的。

第二例将电源和地分别放在第3和第4层,这一设计解决了电源覆铜阻抗问题,由于第1层和第6层的电磁屏蔽性能差,差模EMI增加了。如果两个外 层上的信号线数量少,走线长度很短(短于信号高谐波波长的1/20),则这种设计可以解决差模EMI问题。将外层上的无元件和无走线区域铺铜填充并将 覆铜区接地(每1/20波长为间隔),则对差模EMI的抑制特别好。如前所述,要将铺铜区与内部接地层多点相联。

通用6层板设计 一般将第1和第6层布为地层,第3和第4层走电源和地。由于在电源层和接地层之间是两层居中的双微带信号线层,因而EMI抑制能力是的。该设计的缺点 在于走线层只有两层。前面介绍过,如果外层走线短且在无走线区域铺铜,则用传统的6层板也可以实现相同的堆叠。

另一种6层板布局为信号、地、信号、电源、地、信号,这可实现信号完整性设计所需要的环境。信号层与接地层相邻,电源层和接地层配对。显然,不足之处是层的堆叠不平衡。

这通常会给加工制造带来麻烦。解决问题的办法是将第3层所有的空白区域填铜,填铜后如果第3层的覆铜密度接近于电源层或接地层,这块板可以不严格地算作 是结构平衡的电路板。填铜区接电源或接地。连接过孔之间的距离仍然是1/20波长,不见得处处都要连接,但理想情况下应该连接。

10层板

由于多层板之间的绝缘隔离层非常薄,所以10或12层的电路板层与层之间的阻抗非常低,只要分层和堆叠不出问题,完全可望得到的信号完整性。要按62mil厚度加工制造12层板,困难比较多,能够加工12层板的制造商也不多。

由于信号层和回路层之间总是隔有绝缘层,在10层板设计中分配中间6层来走信号线的方案并非佳。另外,让信号层与回路层相邻很重要,即板布局为信号、地、信号、信号、电源、地、信号、信号、地、信号。

这一设计为信号电流及其回路电流提供了良好的通路。恰当的布线策略是,第1层沿X方向走线,第3层沿Y方向走线,第4层沿X方向走线,以此类推。直观地 看走线,第1层1和第3层是一对分层组合,第4层和第7层是一对分层组合,第8层和第10层是后一对分层组合。当需要改变走线方向时,第1层上的信号线 应藉由“过孔"到第3层以后再改变方向。实际上,也许并不总能这样做,但作为设计概念还是要尽量遵守。

同样,当信号的走线方向变化时, 应该藉由过孔从第8层和第10层或从第4层到第7层。这样布线可确保信号的前向通路和回路之间的耦合紧。例如,如果信号在第1层上走线,回路在第2层且 只在第2层上走线,那麽第1层上的信号即使是藉由“过孔"转到了第3层上,其回路仍在第2层,从而保持低电感、大电容的特性以及良好的电磁屏蔽性能。

如果实际走线不是这样,怎麽办?比如第1层上的信号线经由过孔到第10层,这时回路信号只好从第9层寻找接地平面,回路电流要找到近的接地过 孔 (如电阻或电容等元件的接地引脚)。如果碰巧附近存在这样的过孔,则真的走运。假如没有这样近的过孔可用,电感就会变大,电容要减小,EMI一定会增加。

当信号线经由过孔离开现在的一对布线层到其他布线层时,应就近在过孔旁放置接地过孔,这样可以使回路信号顺利返回恰当的接地层。对于第4层和第7层 分层组合,信号回路将从电源层或接地层(即第5层或第6层)返回,因为电源层和接地层之间的电容耦合良好,信号容易传输。

多电源层的设计

如果同一电压源的两个电源层需要输出大电流,则电路板应布成两组电源层和接地层。在这种情况下,每对电源层和接地层之间都放置了绝缘层。这样就得到我们 期望的等分电流的两对阻抗相等的电源汇流排。如果电源层的堆叠造成阻抗不相等,则分流就不均匀,瞬态电压将大得多,并且EMI会急剧增加。

如果电路板上存在多个数值不同的电源电压,则相应地需要多个电源层,要牢记为不同的电源创建各自配对的电源层和接地层。在上述两种情况下,确定配对电源层和接地层在电路板的位置时,切记制造商对平衡结构的要求。

总结

鉴于大多数工程师设计的电路板是厚度62mil、不带盲孔或埋孔的传统印制电路板,本文关于电路板分层和堆叠的讨论都局限于此。厚度差别太大的电路板,本文推荐的分层方案可能不理想。此外,带盲孔或埋孔的电路板的加工制程不同,本文的分层方法也不适用。

电路板设计中厚度、过孔制程和电路板的层数不是解决问题的关键,优良的分层堆叠是电源汇流排的旁路和去耦、使电源层或接地层上的瞬态电压小并将信 号和电源的电磁场屏蔽起来的关键。理想情况下,信号走线层与其回路接地层之间应该有一个绝缘隔离层,配对的层间距(或一对以上)应该越小越好。根据这些基 本概念和原则,才能设计出总能达到设计要求的电路板。现在,IC的上升时间已经很短并将更短,本文讨论的技术对解决EMI屏蔽问题是的。

PCB行业全景解析
印制电路板(PrintedCircuitBoard,简称“PCB”),是承载电子元器件并连接电路的桥梁,指在通用基材上按预定设计形成点间连接及印制元件的印制板,其主要功能是使各种电子零组件形成预定电路的连接,起传输作用。

PCB作为电子产品的关键元器件几乎应用于所有的电子产品,是现代电子信息产品中不可或缺的电子元器件,被誉为“电子产品之母”。
PCB产品分类


PCB的产品种类众多,可以按照产品的导电层数、弯曲韧性、组装方式、基材、特殊功能等多种方式分类,但在实际中,往往根据PCB各细分行业的产值大小混合分类为:单面板、双面板、多层板、HDI板、封装载板、挠性板、刚挠结合板和特殊板。

PCB封装基板分类可分为:存储芯片封装基板(eMMC)、微机电系统封装基板(MEMS)、射频模块封装基板(RF)、处理器芯片封装基板及高速通信封装基板。

封装基板是Substrate(简称SUB)。基板可为芯片提供电连接、保护、支撑、散热、组装等功效,以实现多引脚化,缩小封装产品体积、改善电性能及散热性、密度或多芯片模块化的目的。

按基材柔软性划分,PCB可分为刚性印制电路板、挠性(柔性)印制电路板(FPC)和刚挠结合印制电路板。

FPC以软性铜箔基材(FCCL)为原材料制成,具有配线密度高、轻薄、可弯曲、可立体组装的优点,适用于小型化、轻量化和移动要求的电子产品。

印刷电路板主要由金属导体箔、胶粘剂和绝缘基板三种材料组合而成,不同的PCB,其绝缘基板表面的导体涂层数可能不同。

根据导电涂层数,可分为单面板、双面板、多层板。其中,多层板又可分为中低层板和高层板。常见的多层板一般为4层板或6层板,复杂的多层板可达几十层。

PCB行业产业链


中国的电子产业链日趋完善、规模大、配套能力强,而PCB产业在整个电子产业链中起到承上启下的关键作用。

PCB是每个电子产品承载的系统合集,核心的基材是覆铜板,上游原材料主要包括铜箔、玻璃纤维及合成树脂。

从成本来看,覆铜板占整个PCB制造的30%-40%左右,铜箔是制造覆铜板的主要原材料,成本占覆铜板的30%(薄板)和50%(厚板)。

下游应用比较广泛,其中通信、汽车电子和消费电子三大领域占比合计60%,5G基站的建设加速将拉动PCB产业链的快速发展。

覆铜板是核心基材图片

覆铜板(CCL)的制造过程是将增强材料浸以有机树脂,经干燥加工形成半固化片。将数张半固化片叠合在一起的坯料,一面或两面覆以铜箔,经热压而成的一种板状材料。

从成本来看,覆铜板占整个PCB制造的30%左右,覆铜板的主要原材料为玻璃纤维布、木浆纸、铜箔、环氧树脂等材料,其中铜箔作为制造覆铜板的主要原材料,占80%的物料比重包括30%(薄板)和50%(厚板)。

各个品种的覆铜板之所以在性能上的不同,主要是表现在它所使用的纤维增强材料和树脂上的差异。生产PCB所需的主要原材料包括覆铜板、半固化片、铜箔、氰化金钾、铜球和油墨等,覆铜板是为主要的原材料。

PCB行业增长态势稳健


PCB广泛的运用途径将有力支撑未来电子纱需求。2019年全球PCB产值约为650亿美元,中国PCB市场较为稳定,2019年中国PCB市场产值近350亿美元,中国地区是全球增长快的区域,占全球产值的一半之多,未来将持续增长。

全球PCB产值地区分布,美洲、欧洲、日本PCB产值在全球的占比不断下降,亚洲其他地区(除日本)的PCB产业产值规模则迅速提高,其中中国大陆的占比提升迅速,是全球PCB产业转移的中心。

PCB市场格局


全球PCB市场较为分散,集中度不高。

2019年全球PCB市场中鹏鼎(中国)、旗胜(日本)、迅达(美国)以6%、5%、4%市占率。

主板要求在有限的空间上承载更多的元器件,进一步缩小线宽线距,普通多层板和HDI已经难以满足需求,由更小的高阶HDI并联起来分散主板功能,使结构设计更加紧凑。

PCB主要应用领域


PCB板的应用覆盖范围十分广泛,下游应用比较广泛,其中通信、汽车电子和消费电子三大领域占比合计60%,5G基站的建设加速将拉动PCB产业链的快速发展。

汽车电子

汽车用PCB要求工作温度符合-40°C~85°C,PCB一般选用FR-4(耐燃材料等级,主要为玻璃布基板),厚度在1.0~1.6mm。

根据中国产业发展研究网的数据,目前中轿车中汽车电子成本占比达到28%,混合动力车为47%,纯电动车高达65%。


消费电子

随着智能手机、平板电脑、VR/AR以及可穿戴设备等频频成为消费电子行业热点,创新型消费电子产品层出不穷,并将渗透消费者生活的方方面面。这也为消费电子PCB的发展带来了契机。

2019年手机及消费电子占PCB下游应用的比例分别为37%。移动终端的PCB需求则主要集中于HDI、挠性板和封装基板。

据Prismark统计,移动终端的PCB需求主要以HDI及挠性板为主,其中HDI板占比约为50.68%,并有26.36%的封装基板需求。

服务器

服务器平台升级将带动整个服务器行业进入上行周期,而PCB以及其关键原材料CCL作为承载服务器内各种走线的关键基材,除了服务器周期带来的量增逻辑,同时还存在服务器平台升级带来的价增逻辑。

可以说,在服务器面临升级、市场即将扩容的情况下,PCB和CCL将因为服务器升级迎来量价齐升的增长机会。

2019年全球个人电脑的PCB需求主要集中于挠性板和封装基板,合计占比达48.17%;服务/存储的PCB需求以6-16层板和封装基板为主。

PCB在服务器中的应用主要包括背板、高层数线卡、HDI卡、GF卡等,其特点主要体现在高层数、高纵横比、高密度及高传输速率。服务器市场的发展也将推动PCB市场特别是PCB市场的发展。

通信领域PCB

在通信领域,根据不同的PCB特性,可以应用于不同功能的通信设备上。对于大尺寸多层、高频材料可以应用于无线网及传输网中。相比而言,多层板、刚挠结合的PCB元件可用于数据通信网及固网宽带等环节。

根据券商的相关测算,单个5G基站对PCB的使用量约为3.21㎡,是4G基站用量的1.76倍,同时由于5G通信的频率更高,对于PCB的性能需求更大,因此5G基站用PCB的单价要4G基站用PCB,由于5G的频谱更高,带来基站的覆盖范围更小,根据测算国内5G基站将是4G基站的1.2-1.5倍,同时还要配套更多的小基站,因此5G所带来的基站总数量将要比4G多出不少。

此外,5G基站功能增多,PCB上元件的集成密度明显提升,电路板的设计难度也随之提高。高频高速材料的使用和制造难度的提升将显著提升PCB单价。

PCB发展趋势图片
PCB的高频多层化:为了扩大通讯通道,以适应数字时代对信息量与速度传播需求的提升,电子通讯设备的使用频率逐步向高频领域转移。

这就要求PCB基板材料应具有低介电常数与低介电损耗角正切值,只有这样才能获得高传播信号速度,并减少信号传播过程中的损失。除此之外,PCB工艺也随着电子信息技术的发展而向多层化、微线宽、微间距多盲孔等方向发展。

高层化PCB将显著缩小密集复杂的线路连接空间,达到集成化的效果。多层板在电子产品设计上得到普遍的认可并得到深入的技术研发。常见的多层板以四层PCB为主,现在六、八、十层板也逐渐得到普及。


PCB品质的提升推动上游CCL、FR-4基板的产业升级

随着PCB工业规模的扩大核心技术的创新,行业的竞争也不断加剧,厂家开始更为重视PCB产品的品质,因此对PCB品质的管控也愈加严格。

为了适应PCB向精细线路、高频多层方向发展,其上游的CCL材料由单一型过渡到系列化,覆铜板的新材料、新工艺、新技术的运用与研发成为必然趋势。

与此相对应,FR-4型产品的性能也逐渐提升,FR-4型覆铜板的某些性能已不能完全满足PCB的制作要求,FR-4逐步走向高耐燃性、高尺寸稳定性、低介电常数和环保性。


CB国产化进程加速

中国PCB企业依靠成本优势、产能扩张和下游本土品牌的崛起,拉动PCB国产化进程。随着行业的发展,中国PCB内资企业通过自身发展或合资建厂,逐渐积累自身资本、人才和技术资源,构建自身产业护城河,不断发展壮大。

在技术上,不断加大研发投入,积累中PCB技术;在产能上,不断投资建厂,形成规模优势;在产业链上,逐步完善上游原材料渠道和应用市场,形成完备的上下游产业链体系。

中国正式实现PCB贸易从逆差到顺差的转变,标志着中国PCB正进行结构性转变,生产技术不断发展,初步实现进口替代的目标。

FPC柔性线路板常见的一些工艺知识

1、FPC是柔性的线路板可以折叠弯曲,一般用做翻盖手机的上下部分连接、电池的保护电路等。

为了FPC的平整度生产厂家出货之般会对FPC进行压平处理,并且由于FPC是柔性的所以很难采用抽真空包装。所以在传递和使用过程种注意FPC的平整度尽量不要折弯。

2、FPC一般为1~2层,多层的FPC比较少见。FPC的基材和Cover Layer一般采用聚酰亚胺,基材和铜箔之间压和成一体。有些FPC的厚度以铜箔的厚度标识如1.5OZ,2.0OZ。

与PCB不同的是Cover Layer在铜箔上的开口一般小于铜箔面积而PCB上Solder Mask面积一般大于铜箔的面积。需要注意的一点就是FPC基材和铜箔之间靠树脂粘和,有些情况下树脂会溢出造成焊盘污染导致漏焊。

3、FPC的废边(Waste Area,没有电路的边缘部分)部分一般采用2种工艺。一种叫Solid Copper,既采用整体的铜箔覆盖。

另一种叫Cross Hatching。Solder Copper工艺的FPC柔性相对较小,如果不折弯比较平整但是折弯后不容易恢复。Cross Hatching工艺的FPC与其相反。

4、FPC在整个SMT过程种均需要使用支撑,通常所选用的支撑未耐热防静电的合成材料制成,也有公司使用薄铝板进行支撑。常用的定位的方式为采用高温胶带将FPC粘在支撑板上。

不过需要注意的是胶带的位置尽量在FPC的四个角和比较长的边中间位置,这可以防止FPC翘起。还有胶带厚度会对锡膏印刷产生一定的影响,所以胶带的位置不要贴在元件密集的位置边缘及有细管脚的元件周围,更注意不要贴在焊盘上。

5、因为FPC的平整度和PCB相比比较差并且还存在支撑、胶带等多种因素的影响所以FPC在印刷的过程种很难和网板完全贴,这就会造成锡膏量的控制上存在问题。

对网板开口有两点建议:一是网板对于密管脚的IC元件尽量的将网孔变窄拉长并且网板尽可能的薄,实践证明颠倒梯形的网孔对印刷比较有利。另一条是对于跨度比较大的片式元件或连接件尽量加大网孔避免因为FPC不平造成漏焊。

6、因为FPC需要支撑所以在回流焊接时回流炉的Profile设定一定要考虑支撑板对热量的吸收,一般燠热区建议回流炉下面的温度设定比上面高一部分以支撑板的温度和FPC相近避免冷焊,再有就是出口的冷却风要强支撑板温度降到安全温度,还可以在路子出口增加冷却风扇。

7、为了方便分割,FPC与边缘之间一般沿轮廓预先切开,未切开的部分一般保留一层基材(Micro Joint)并需要在上面打邮票孔,邮票孔不但可以方便分割还可以防止在分割点处产生大的毛刺。

连接部分还能FPC在SMT的过程种不翘起,所以Micro Joint因该在FPC内每个切口处保留。FPC的切割可以选择手工分割或使用类似于冲床的模具分割。

深圳市赛孚电路科技有限公司为你提供的“fpc四层板”详细介绍
在线留言

*详情

*联系

*手机

推荐信息

PCB机元器>多层电路板>fpc四层板
信息由发布人自行提供,其真实性、合法性由发布人负责;交易汇款需谨慎,请注意调查核实。
触屏版 电脑版
@2009-2025 京ICP证100626