从正极材料出货结构看,三元材料依旧占据主流地位。根据GGII数据,2020年中国正极材料市场出货量达51万吨,同比增长27%。从占比来看,三元材料占比为46%,因受到上半年影响较2019年略有下滑,但仍占比高,且增长态势不变;磷酸铁锂材料因补贴效应弱化占比提升;除三元和磷酸铁锂外,其他材料类型出货量占比下降。
回收锂电池三元材料,钴酸锂,钴粉,氧化钴,四氧化三钴,电池正极,镍锂电池,镍废料,稀有金属
回收锂电池三元材料,高镍正极能量密度高,具备里程优势。三元材料中,Ni/Co/Mn是过渡金属元素,形成固溶体,原子可任意比例混排;Ni上升会提升容量;Mn4+呈电化学惰性,主要起稳定结构的作用,Mn含量上升会提升释氧温度,保障安全性;
Co既能稳定材料的层状结构,又能减小阳离子混排,有利于电池循环性能。目前电池能量密度方面NCA>NCM811>NCM622>NCM523,随着能量密度的提升,整车里程焦虑不断改善。另外单位Wh的电池成本也将进一步改善
回收锂电池三元材料,高能量密度和里程是未来乘用车的追求,高镍技术成为中长期发展的确实趋势。消费者重要的两个需求维度分别是里程和价格,为了消除消费者真实的里程焦虑需要电池的能量密度进一步提升。真实工况下综合平均里程仅为标称里程的约70-80%,而在高速+冬天的严峻工况下,新能源车真实里程平均仅有标称里程的一半。
由此我们认为中长期标称里程达到 600km 以上,配合快充的基础设 施建设,才能较好的消除里程焦虑,而平价与真实里程需求的共同满足需要高镍锂电进一步的发展。未来新能源汽车需要更高的电池容量,600公里以上高镍是好的选择,800公里以上高镍几乎是的选择
通过系统能量密度的进一步提升与自身降本,高镍锂电中长期有望从系统级成本上接近或低于铁锂。我们认为单Wh成本与价格上,高镍锂电铁锂,但通过系统能量密度的大幅提升,与进一步降本下Wh成本差的缩小,到 2030 年高镍锂 电可实现系统级成本中低里程与铁锂相近,高里程(续航大于 800km)下低于铁锂
回收锂电池三元材料,钴酸锂,钴粉,氧化钴,四氧化三钴,电池正极,镍锂电池,镍废料,稀有金属
前驱体为非标定制产品,是正极生产过程中技术含量高的环节。前驱体为正极 加工的前置生产工序,前驱体品质直接决定了后烧结产物的理化指标。
三元前驱体生产不同于钴酸锂、磷酸铁锂的前驱体,采用氢氧化物共沉淀法,将硫酸钴、 硫酸镍、硫酸锰在反应釜中按一定比例合成。
共沉淀法使得 NCM 的改性相对其它 几种正极材料而言更加容易,可以比较容易地控制前驱体的粒径、比表面积、形 貌和振实密度。选择合适的沉淀剂、控制 PH 值、反应时间、温度、搅拌速度, 是影响前驱体制备的核心壁垒。
回收锂电池三元材料
1、 原材料成本计算是根据元素守恒定律、三元材料的化学式,以及原材料的损 耗率,计算出单位质量三元材料所需上游原材料的质量,乘以每种上游原材 料的价格,得到原材料成本;
2、 厂家自产前驱体生产三元正极材料;
3、 将三元材料的成本构成分为原材料成本、前驱体加工成本、正极材料加工成本,售价拆分是在三元材料成本的基础上加上前驱体加工毛利和正极材料加 工毛利;
4、 表中上游原材料价格全部为不含税单价,引用鑫椤锂电2021年 2月5日数据。
回收锂电池三元材料