六层PCB板工厂

  • 图片0
  • 图片1
  • 图片2
  • 图片3
  • 图片4
  • 图片5
1/6
新浪微博
QQ空间
豆瓣网
百度新首页
取消

PCB线路板调试技术之六类模块

在PCB抄板及设计工作中,我们常常要对电路板进行调试与测试,六类模块电路板的调试就是其中一种,为了能让大家更好的理解六类模块电路板的调试技术,我先给大家简单的介绍一下六类模块。六类模块的核心部件是线路板,其设计结构、制作工艺基本上就决定了产品的性能指标,六类模块执行的标准是 EIA/TIA 568B.2-1,当中为重要的参数是插入损耗、回波损耗、近端串扰等。

插入损耗 (Insert Loss):由于传输通道阻抗的存在,它会随着信号频率的增加而使信号的高频分量衰减加大,衰减不仅与信号频率有关,也与传输距离有关,随着长度的增加,信号衰减也会随着增加。回波损耗(Return Loss):由于产品中阻抗发生变化,就会产生局部震荡,致使信号反射,被反射到发送端的一部分能量会形成噪音,导致信号失真,降低传输性能。如全双工的千兆网,会将反射信号误认为是收到的信号而引起有用信号的波动,造成混乱,反射的能量越少,就意味着通道采用线路的阻抗一致性越好,传输信号越完整,在通道上的噪音就越小。回波损耗RL的计算公式:回波损耗=发射信号÷反射信号。
  

在设计中,阻抗的全线路一致性以及与100欧姆阻抗的六类线缆配合是解决回波损耗参数失效的有效手段。例如PCB线路的层间距离不均匀、传输线路铜导体截面变化、模块内的导体与六类线缆导体不匹配等,都会引起回波损耗参数变化。近端串扰(NEXT): NEXT是指在一对传输线路中,一对线对另一对线的信号耦合,即为当一条线对发送信号时,在另一条相邻的线对收到的信号。这种串扰信号主要是由于临近绕对通过电容或电感耦合过来的,通过补偿的办法,抵消、减弱其干扰信号,使其不能产生驻波是解决该参数失效的主要办法。

在模块试制阶段,用理论做指导,以计算机辅助设计为依据,就能很快的达到预期效果。在国内进行的六类模块PCB设计中,主要以线路对角补偿理论做依据,进行大量的试制工作,同样也可达到预期效果。模块与插头引起的信号外漏现象会发生相互间的信号干涉,为防止信号干涉现象,在平衡链路中导体进行扭绕,达到平衡传输的目的,扭绕结构会造成信号间的相位变化,也会增大线路上的信号衰减,这个结构称之为非屏蔽结构(UTP)。4对平衡双绞线中,每对线的绞距不同,线缆尾端使用模块化的连接件,形成连接件和接插件之间的相连,相互连接区内形成导体之间进行的平衡结构,即为六类系统的链路。在链路内产生了在平衡线路中所发生的信号干扰现象,即为串扰,解决串扰问题是进行高速通信用连接件制造的核心技术。
  

在接触端子之间产生接触损失会导致衰减、反射损失等现象,这种损失在高速信号传输时,会产生障碍和故障,解决这类问题是进行高速通信用连接件制造的核心技术。在模块与插头的连接线路中,插头内的每对连接端子是平衡线路,平衡线路中导体会产生信号外漏及阻抗损耗,阻碍通信的大因素就是信号外漏。可通过研究E场和H场解决此类问题或从研究反向衰减的方法中寻找解决方案,这是高速通信用连接件制造的核心技术。E场和H场平衡线路上所发生的信号干扰,即电磁场干扰,可通过E场和H场的分布进行描述。



电子通信线路测试的主要参数是扫频下进行的相关测量,在这个频率信号上附加语音或数据包进行传输,传输速度越高频率越快。用信号外漏的解决方法来解释产生问题的插座信号外漏现象,基本的方法是根据电感和电容所发生的信号外漏仿真图,在信号集中区域收集信号并进行返送。在设计中,耦合电容的设计是关键参数,与耦合线路的长度、线间距离、宽度、补偿线路布置等有关。考虑到六类系统采用4对线同时传输信号,必然会对其产生综合远端串绕,可通过分析,进行计算机仿真,设计出补偿线路。国内同行一般进行的六类模块试制过程主要是在确定主干回路后,在设计出补偿回路,进行大量的方案设计和样品制作,在补偿线路、PCB层间结构基本确定后,后续工作主要是通过工艺改进,从而提。

PCB线路板为什么要做阻抗吗

阻抗对于PCB电路板的意义何在,PCB电路板为什么要做阻抗?本文介绍了什么是阻抗及阻抗的类型,其次介绍了PCB线路板为什么要做阻抗,后阐述了阻抗对于PCB电路板的意义,具体的跟随小编一起来了解一下。

什么是阻抗?

在具有电阻、电感和电容的电路里,对交流电所起的阻碍作用叫做阻抗。阻抗常用Z表示,是一个复数,实部称为电阻,虚部称为电抗,其中电容在电路中对交流电所起的阻碍作用称为容抗 ,电感在电路中对交流电所起的阻碍作用称为感抗,电容和电感在电路中对交流电引起的阻碍作用总称为电抗。阻抗的单位是欧。

阻抗类型

(1)特性阻抗

在计算机﹑无线通讯等电子信息产品中, PCB的线路中的传输的能量, 是一种由电压与时间所构成的方形波信号(square wave signal, 称为脉冲pulse),它所遭遇的阻力则称为特性阻抗。



(2)差动阻抗

驱动端输入极性相反的两个同样信号波形,分别由两根差动线传送,在接收端这两个差动信号相减。差动阻抗就是两线之间的阻抗Zdiff。



(3)奇模阻抗

两线中一线对地的阻抗Zoo,两线阻抗值是一致。



(4)偶模阻抗

驱动端输入极性相同的两个同样信号波形, 将两线连在一起时的阻抗Zcom。



(5)共模阻抗

两线中一线对地的阻抗Zoe,两线阻抗值是一致,通常比奇模阻抗大。

PCB线路板为什么要做阻抗?

pcb线路板阻抗是指电阻和对电抗的参数,对交流电所起着阻碍作用。在pcb线路板生产中,阻抗处理是的。原因如下:

1、PCB线路(板底)要考虑接插安装电子元件,接插后考虑导电性能和信号传输性能等问题,所以就会要求阻抗越低越好,电阻率要低于每平方厘米1&TImes;10-6以下。

2、PCB线路板在生产过程中要经历沉铜、电镀锡(或化学镀,或热喷锡)、接插件焊锡等工艺制作环节,而这些环节所用的材料都电阻率底,才能线路板的整体阻抗低达到产品质量要求,能正常运行。

3、PCB线路板的镀锡是整个线路板制作中容易出现问题的地方,是影响阻抗的关键环节。化学镀锡层大的缺陷就是易变色(既易氧化或潮解)、钎焊性差,会导致线路板难焊接、阻抗过高导致导电性能差或整板性能的不稳定。

4、PCB线路板中的导体中会有各种信号传递,当为提高其传输速率而提高其频率,线路本身如果因蚀刻、叠层厚度、导线宽度等因素不同,将会造成阻抗值得变化,使其信号失真,导致线路板使用性能下降,所以就需要控制阻抗值在一定范围内。

阻抗对于PCB电路板的意义

对电子行业来说,据行内调查,化学镀锡层致命的弱点就是易变色(既易氧化或潮解)、钎焊性差导致难焊接、阻抗过高导致导电性能差或整板性能的不稳定、易长锡须导致PCB线路短路以至烧毁或着火事件。

据悉,国内先研究化学镀锡的当是上世纪90年代初昆明理工大学,之后就是90年代末的广州同谦化工(企业),一直至今,10年来行内均有认可该两家机构是做得好的。其中,据我们对众多企业的接触筛选调查、实验观测以及长期耐力测试,证实同谦化工的镀锡层是低电阻率的纯锡层,导电和钎焊等质量可以到较高的水准,难怪他们敢对外其镀层在无须任何封闭及防变色剂保护的情况下,能保持一年不变色、不起泡、不脱皮、不长锡须。

后来当整个社会生产业发展到一定程度的时候,很多后来参与者往往是属于互相抄袭,其实相当一部分企业自己本身并没有研发或能力,所以,造成很多产品及其用户的电子产品(线路板板底或电子产品整体)性能不佳,而造成性能不佳的主要原因就是因为阻抗问题,因为当不合格的化学镀锡技术在使用过程中,其为PCB线路板所镀上去的锡其实并不是真正的纯锡(或称属单质),而是锡的化合物(即根本就不是金属单质,而是金属化合物,氧化物或卤化物,更直接地说是属于非金属物质)或锡化合物与锡金属单质的混合物,但单凭借肉眼是很难发现的…

因为PCB线路板的主体线路是铜箔,在铜箔的焊点上就是镀锡层,而电子元件就是通过焊锡膏(或焊锡线)焊接在镀锡层上面的,事实上焊锡膏在融熔状态焊接到电子元件和锡镀层之间的是金属锡(即导电良好的金属单质),所以可以简单扼要地指出,电子元件是通过锡镀层再与PCB板底的铜箔连接的,所以锡镀层的纯洁性及其阻抗是关键;又,但未有接插电子元件之前,我们直接用仪器去检测阻抗时,其实仪器探头(或称为表笔)两端也是通过先接触PCB板底的铜箔表面的锡镀层再与PCB板底的铜箔来连通电流的。所以锡镀层是关键,是影响阻抗的关键和影响PCB整板性能的关键,也是易于被忽略的关键。

众所周知,除金属单质外,其化合物均是电的不良导体或甚至不导电的(又,这也是造成线路中存在分布容量或传布容量的关键),所以锡镀层中存在这种似导电而非导电的锡的化合物或混合物时,其现成电阻率或未来氧化、受潮所发生电解反应后的电阻率及其相应的阻抗是相当高的(足已影响数字电路中的电平或信号传输,)而且其特征阻抗也不相一致。所以会影响该线路板及其整机的性能。

所以,就现时的社会生产现象来说,PCB板底上的镀层物质和性能是影响PCB整板特征阻抗的主要原因和直接的原因,但又由于其具有随着镀层老化及受潮电解的变化性,所以其阻抗产生的忧患影响变得更加隐性和多变性,其隐蔽的主要原因在于:不能被肉眼所见(包括其变化),第二不能被恒常测得,因为其有随着时间和环境湿度的改变而变的变化性,所以总是易于被人忽略。

PCB多层板表面处理方式分类:
1.热风整平涂布在PCB表面的熔融锡铅焊料和加热压缩空气流平(吹气平整)过程。使其形成抗铜氧化涂层,可提供良好的可焊性。热风焊料和铜在结合处形成铜 - 锡金属化合物,其厚度约为1~2mil;


2.有机抗氧化(OSP)通过化学方法在清洁的裸铜表面上生长一层有机涂层。这种PCB多层板薄膜具有抗氧化,耐热冲击,防潮,以保护铜表面在正常环境下不再生锈(氧化或硫化等);同时,在随后的焊接温度下,焊接用焊剂很容易快速去除;

3.镍金化学在铜表面,涂有厚实,良好的镍金合金电性能,可以保护PCB多层板。很长一段时间不像OSP,它只用作防锈层,它可以用于长期使用PCB并获得良好的电能。此外,它还具有其他表面处理工艺所不具备的环境耐受性;

4.化学镀银沉积在OSP与化学镀镍/镀金之间,PCB多层板工艺简单快速。暴露在炎热,潮湿和污染的环境中仍然提供良好的电气性能和良好的可焊性,但失去光泽。由于银层下没有镍,沉淀的银不具有化学镀镍/浸金的所有良好的物理强度;

5.在PCB多层板表面导体上镀镍金,镀一层镍然后镀一层金,镀镍主要是为了防止金与铜之间的扩散。有两种类型的镀镍金:软金(,这意味着它看起来不亮)和硬金(光滑,坚硬,耐磨,钴和其他元素,表面看起来更亮)。软金主要用于芯片包装金线;硬金主要用于非焊接电气互连。

6.PCB混合表面处理技术选择两种或两种以上表面处理方法进行表面处理,常见的形式有:镍金防氧化,镀镍金沉淀镍金,电镀镍金热风整平,常见形式有:镍金防 - 氧化,镀镍金沉淀镍金,电镀镍金热风整平,重镍和金热风平整。尽管PCB多层板表面处理过程的变化并不显着,并且似乎有些牵强,但应该注意的是,长期缓慢的变化将导致的变化。随着对环境保护的需求不断增加,PCB的表面处理工艺必将在未来发生变化。

如何为柔性线路板(FPC板)选用保护膜?

柔性线路板FPC板上用什么保护膜来保护呢?既要防尘防污防静电,又要有效贴合板面,防静电PET保护膜合适。



  柔性电路板保护膜



  柔性电路板又称“软板”,即FPC板。是用柔性的绝缘基材制成的印刷电路。柔性电路提供优良的电性能,能满足更小型和更高密度安装的设计需要,也有助于减少组装工序和增强可靠性。柔性电路板是满足电子产品小型化和移动要求的惟一解决方法。可以自由弯曲、卷绕、折叠,可以承受数百万次的动态弯曲而不损坏导线,可依照空间布局要求任意安排,并在三维空间任意移动和伸缩,从而达到元器件装配和导线连接的一体化;柔性电路板可大大缩小电子产品的体积和重量,适用电子产品向高密度、小型化、高可靠方向发展的需要。



  因此,FPC板在航天、军事、移动通讯、手提电脑、计算机外设、PDA、数字相机等领域或产品上得到了广泛的应用。



  但是FPC板在生产过程中很容易出现静电击穿现象。目前解决这一问题主要依靠市面上防静电台垫,而该产品靠静电剂内添并迁移到台垫表面,然后吸收空气水分子形成导电通路,从而对FPC板有防静电效果,同时该产品易受空气、湿度等环境因素影响,静电排放效果差。尤其在北方气候干燥地区,表面电阻值升高,随着时间推移,防静电指标衰减越来越快,造成静电排放不稳定,这样容易击穿FPC板上线路芯片,造成设备运行损坏。同时,该产品又不能随同FPC板搬运,不能起到随时防护作用。在应用环节上缺陷已十分明显,已不能满足目前FPC板发展技术的要求。



  现FPC板正处于规模小但迅猛发展之中。聚合物厚膜法是一种、低成本的生产工艺。该工艺在廉价的柔性基材上,选择性地网印导电聚合物油墨。其代表性的柔性基材为PET。聚合物厚膜法导体包括丝印金属填料或碳粉填料。聚合物厚膜法本身很清洁,使用无铅的SMT胶黏剂,不必蚀刻。因其使用加成工艺且基材成本低,聚合物厚膜法电路是铜聚酰亚胺薄膜电路价格的1/10;是刚性电路板价格的1/2~1/3。聚合物厚膜法尤其适用于设备的控制面板。在移动电话和其他的便携产品上,聚合物厚膜法适合将印制电路主板上的元件、开关和照明器件转变成聚合物厚膜法电路。既节省成本,又减少能源消耗。



  防静电PET保护膜应用在“柔性线路板”上市场前景十分广阔,性能:透明防静电PET保护膜比较柔软,与FPC板硬度差不多,并且透明到可以观察到FPC表面工艺要求,而且又不与外界空气接触,当然也不会产生静电及粉尘。由于防静电保护膜两边都有防静电涂层,因此在与FPC板分离时又不会产生静电,当然也不会击穿FPC板上线路的芯片。这既解决了FPC板运输途中静电产生,同时又能进行粘合并且透明又不受空气、湿度等环境因素的影响。产品可广泛应用于半导体工业、LCD工业、电子装备及微电子设备业、电子电气、通讯制造、精密仪器、光学制造、医药工业及生物工程等行业工业领域以及高铁车厢、医院、家庭、办公领域,用于工业生产车间、试验室、机房,以及医院手术室、CT、X射线室、CCU、ICU病房等的地板、工作台面、墙面板等。

柔性电路板FPC表面电镀知识

1.柔性电路板FPC电镀

(1)FPC电镀的前处理柔性印制板FPC经过涂覆盖层工艺后露出的铜导体表面可能会有胶黏剂或油墨污染,也还会有因高温工艺产生的氧化、变色,要想获得附着力良好的紧密镀层把导体表面的污染和氧化层去除,使导体表面清洁。

但这些污染有的和铜导体结合十分牢固,用弱的清洗剂并不能完全去除,因此大多往往采用有一定强度的碱性研磨剂和抛刷并用进行处理,覆盖层胶黏剂大多都是环氧树脂类而耐碱性能差,这样就会导致粘接强度下降,虽然不会明显可见,但在FPC电镀工序,镀液就有可能会从覆盖层的边缘渗入,严重时会使覆盖层剥离。在终焊接时出现焊锡钻人到覆盖层下面的现象。可以说前处理清洗工艺将对柔性印制板F{C的基本特性产生重大影响,对处理条件给予充分重视。



(2)FPC电镀的厚度电镀时,电镀金属的沉积速度与电场强度有直接关系,电场强度又随线路图形的形状、电极的位置关系而变化,一般导线的线宽越细,端子部位的端子越尖,与电极的距离越近电场强度就越大,该部位的镀层就越厚。在与柔性印制板有关的用途中,在同一线路内许多导线宽度差别的情况存在这就更容易产生镀层厚度不均匀,为了预防这种情况的发生,可以在线路周围附设分流阴极图形,吸收分布在电镀图形上不均匀的电流,大限度地所有部位上的镀层厚薄均匀。



因此在电极的结构上下功夫。在这里提出一个折中方案,对于镀层厚度均匀性要求高的部位标准严格,对于其他部位的标准相对放松,例如熔融焊接的镀铅锡,金属线搭(焊)接的镀金层等的标准要高,而对于一般防腐之用的镀铅锡,其镀层厚度要求相对放松。



(3)FPC电镀的污迹、污垢刚刚电镀好的镀层状态,特别是外观并没有什么问题,但不久之后有的表面出现污迹、污垢、变色等现象,特别是出厂检验时并未发现有什么异样,但待用户进行接收检查时,发现有外观问题。这是由于漂流不充分,镀层表面上有残留的镀液,经过一段时间慢慢地进行化学反应而引起的。特别是柔性印制板,由于柔软而不十分平整,其凹处易有各种溶液“积存?,而后会在该部位发生反应而变色,为了防止这种情况的发生不仅要进行充分漂流,而且还要进行充分干燥处理。可以通过高温的热老化试验确认是否漂流充分。

图片

2.柔性电路板FPC化学镀



当要实施电镀的线路导体是孤立而不能作为电极时,就只能进行化学镀。一般化学镀使用的镀液都有强烈的化学作用,化学镀金工艺等就是典型的例子。化学镀金液就是pH值非常高的碱性水溶液。使用这种电镀工艺时,很容易发生镀液钻人覆盖层之下,特别是如果覆盖膜层压工序质量管理不严,粘接强度低下,更容易发生这种问题。



置换反应的化学镀由于镀液的特性,更容易发生镀液钻入覆盖层下的现象,用这种工艺电镀很难得到理想的电镀条件。



3.柔性电路板FPC热风整平



热风整平原本是为刚性印制板PCB涂覆铅锡而开发出来的技术,由于这种技术简便,也被应用于柔性印制板FPC上。热风整平是把在制板直接垂直浸入熔融的铅锡槽中,多余的焊料用热风吹去。这种条件对柔性印制板FPC来说是十分苛刻的,如果对柔性印制板FPC不采取任何措施就无法浸入焊料中,把柔性印制板FPC夹到钛钢制成的丝网中间,再浸入熔融焊料中,当然事先也要对柔性印制板FPC的表面进行清洁处理和涂布助焊剂。



由于热风整平工艺条件苛刻也容易发生焊料从覆盖层的端部钻到覆盖层之下的现象,特别是覆盖层和铜箔表面粘接强度低下时,更容易频繁发生这种现象。由于聚酰亚胺膜容易吸潮,采用热风整平工艺时,吸潮的水分会因急剧受热蒸发而引起覆盖层起泡甚至剥离,所以在进行FPC热风整平之前,进行干燥处理和防潮管理。

PCB板材的Tg值

业界长期以来,Tg值是常见的用来划分FR-4基材的等级指标,通常认为Tg值越高,材料的可靠性越高。

比如下图老wu在南亚上边截取的关于FR-4板材的说明:

Tg135℃,板材用途:主机板、消费类电子产品等

Tg180℃,板材用途:CPU主板,DDR3 内存基板,IC封装用基板等等。

基材对于印刷电路板的作用,就像印刷电路板对于电子器件的作用一样重要。按照PCB的基材按性质可分为有机基板和无机基板两个大的体系。

有机基板由酚醛树脂浸渍的多层纸层或环氧树脂、聚酰亚胺、氰酸酯、BT 树脂等浸渍的无纺布或玻璃布层组成。这些基板的用途取决于 PCB 应用所需的物理特性,如工作温度、频率或机械强度。

无机基板主要包括陶瓷和金属材料,如铝、软铁、铜。这些基板的用途通常取决于散热需要。

我们常用的刚性印制板基板属于有机基板,比如FR-4环氧玻纤布基板,是以环氧树脂作粘合剂,以电子级玻璃纤维布作增强材料的一类基板。

我们看到,FR-4以环氧树脂作为粘合剂,树脂材料有一个重要特性参数:玻璃化转变温度Tg(glass transition temperature),指的是材料从一个相对刚性或“玻璃”状态转变为易变性或软化状态的温度转变点。

玻璃态物质在玻璃态和高弹态之间相互可逆转化的温度。啥意思?就是说FR-4基板的粘合剂环氧树脂若温度低于Tg,这时材料处于刚硬的“玻璃态”。当温度Tg时,材料会呈现类似橡胶般柔软可挠的性质。对!它~变【软】了~ 图片



玻璃态

树脂材料处于温度Tg以下的状态为坚硬的固体即玻璃态。在外力作用下有一定的变形但变形可逆,即外力消失后,其形变也随之消失,是大多数树脂的使用状态。

高弹态

当树脂受热温度超过Tg时,无定形状态的分子链开始运动,树脂进入高弹态。处于这一状态的树脂类似橡胶状态的弹性体,但仍具有可逆的形变性质。

注意,温度超过Tg值后,材料逐渐变软,是逐渐,而且只要树脂没有发生分解,当温度冷却到Tg值以下时,它还是可以变回之前性质相同的刚性状态。

氮素,有个Td值,叫热分解温度,树脂类材料被加热至某一高温点时,树脂体系开始分解。树脂内的化学键开始断裂并伴随有挥发成分溢出,那PCB基材里的树脂就变少了。Td点指的是这个过程开始发生的温度点。Td通常定义为失去原质量5%时对应的分解温度点。但这5%对于多层PCB来说是非常高的了。

我们知道,影响PCB上传输线特性阻抗的因素有,线宽,走线与参考平面间距,板材介电常数等等。而基板材料的树脂量对介电特性有很大的影响,而且树脂挥发后对控制走线与参考平面的间距也有影响。

对于无铅焊接工艺需要考虑这个Td值,比如传统的锡铅焊接工艺温度范围为210~245℃,而无铅焊接工艺温度范围为240~270℃。

下边两个这个截图是老wu在建滔官网上下载的两份板材的参数表做的对比,左边的是FR-4常规系列板材,右边是FR-4无铅板材

常规FR4 板材 KB-6160 Tg值为135℃,5%质量损失Td值为305℃

FR4无铅板材 KB-6168LE Tg值为 185℃,5%质量损失Td值为359℃

我们看到,常规FR4板材的Td值都在300℃以上,而有铅焊接工艺温度范围在240~270℃,Td值完全满足哇,为啥还要搞个无铅版本呢?

正如老wu上边所述,5%的树脂质量挥发率对于需要控制阻抗的多层PCB来说显得太大了,对于锡铅焊接工艺来说,210~245℃的温度材料基本不会出现明显的热分解,而无铅焊接的240~270℃温度区间,对于普通Tg FR-4 基材来说,已经开始损失1.5~3%的树脂质量。虽然不到IPC标准所要求的5%,但这损失的树脂质量也不可忽视。同时,这个分解水平,还可能会影响基材长期的可靠性或导致焊接过程中出现分层或空洞的缺陷,特别是需要多次焊接的过程或存在返修加热的情况。

所以,如果采用无铅焊接工艺的话,除了考虑Tg值,还要考虑Td值。

基板材料的性能在Tg值以上和在Tg值以下时差异很大,不过,Tg值一般被描述为一个非常的温度值,比如Tg135,并不是说温度一超过135℃基板就变得软趴趴,而是当温度接近Tg值开始,材料的物料性能会开始改变,它是一个逐步变化的过程。

树脂体系的Tg值对材料的性能影响主要有两个方面:

热膨胀的影响

树脂体系固化时间

板材受热膨胀,脑补一下画面,SMT焊接时BGA焊盘的间距是不是也就跟着变化了?而且,热膨胀导致的机械应力,会对PCB上的走线和焊盘的连接造成细微的裂纹,这些裂纹可能在PCB生产完毕后的开/短路测试时不会被发现,而在SMT等二次加热后故障就显现出来了,这往往让人很懵逼,而糟糕的情况是,SMT加热时暗病都没出现,在产品出去之后,在冷热交替的使用环境中,板材的受热膨胀让这些细微的裂纹随机性的发生,造成设备故障。

基板材料热性能参数除了标准Tg、Td值,还有热膨胀系数CTE,有X/Y轴方向的CTE也有Z轴方向的CTE。

Z轴的CTE对PCB的可靠性有很重要的影响。由于镀覆孔贯穿PCB的Z轴,所以基材中的热膨胀和收缩会导致镀覆孔扭曲和塑性形变,也会使PCB表面的铜焊盘变形。

而SMT时,X/Y轴的CTE则变得非常重要。特别是采用芯片级封装(CSP)和芯片直接贴装时,CTE的重要性更为,同时,X/Y轴的CTE也会影响覆铜箔层压板或PCB的内层附着力和抗分层能力。特别是采用无铅焊接工艺的PCB来说,每一层中的X/Y轴CTE值就显得尤其重要了。

那么,是不是高Tg值的基材就是好呢?在关于Tg值的许多讨论中,往往认为较高的Tg值总是对基材有利的,但情况也并非总是如此。可以确定的是,对于一种给定的树脂体系,高Tg值基材在受热时的材料高速率膨胀开始时间要相对晚一些,而整体膨胀则与材料的种类有很大关系。低Tg值的基材可能会比高Tg值的基材表现出更小的整体膨胀,这主要与树脂本身的CTE值,或者树脂配方中加入无机填料 降低了基材的CTE有关。

同时还要注意的是,有些低端的FR-4材料,标准Tg值是140℃的基材比标准Tg值是170℃的基材具有更高的热分解温度Td值。如上边老wu所述,Td对于无铅焊接来说是一个很重要的指标,一般建议选择Td数值较大的,而的FR-4往往同时具备高的Tg值和高Td值。

此外,高Tg值的基材往往比低Tg值的基材刚性更大且更脆,这往往会影响PCB制造过程的生产效率,特别是钻孔工序。

比如某创就发帖子说明,随着板子越来越密,过孔与过孔之间的间隙越来越小,对于材料要求越来越高,为此某创将提供TG=155的中TG板材为多层板收费服务!

为啥多收费?

TG=155的板材比TG=135的成本高20%左右,嗯 来料贵了

因为钻孔,中TG用新钻钻咀效果更佳(一般钻咀能磨4次),因为太硬

压合时间:普通TG=135的只需要压合110分钟,而中TG=1 55的压合150分钟

为啥要提供中或高Tg板材,板厂那边说,原因之一是因为高密的过孔,普通TG的过孔间距不能小于12MIL,而中TG不能小于 10MIL,因为板材有玻璃布,在钻孔的时候会有一些拉伤,两个过孔之间你拉一点我拉一点就形成了灯芯效应,而中TG因为硬,板材内的成份不一样,又加上用新钻咀能有效的防范灯芯效应,后续对于难度高的多层板,过孔间间隙太密,某创会强制客选择用中TG板材生产!

原因之二是基板的Tg提高了, 印制板的耐热性、耐潮湿性、耐化学性、耐稳定性等特征都会提高和改善。TG值越高,板材的耐温度性能越好,尤其在无铅喷锡制程中,高Tg应用比较多。

这是从板厂的可制造性方面考虑,而如果是PCB装配采用无铅焊接工艺的话,还需要综合考虑玻璃化转变温度Tg、分解温度Td、热膨胀系数CTE、吸水率、分层时间等等因素。

深圳市赛孚电路科技有限公司为你提供的“六层PCB板工厂”详细介绍
在线留言

*详情

*联系

*手机

推荐信息

PCB机元器>多层电路板>六层PCB板
信息由发布人自行提供,其真实性、合法性由发布人负责;交易汇款需谨慎,请注意调查核实。
触屏版 电脑版
@2009-2024 京ICP证100626