高精密电路板厂商

  • 图片0
  • 图片1
  • 图片2
  • 图片3
  • 图片4
  • 图片5
1/6
新浪微博
QQ空间
豆瓣网
百度新首页
取消

PCB线路板高频板与高速板的区别,你知道吗?
PCB线路板是电子产品中不可或缺的重要组成部分,而在不同应用场景中所使用的PCB线路板也具备不同的特点和优点。其中,高频板和高速板是两种特殊的PCB线路板,它们相比于普通的PCB线路板具有特的应用场景和优势。



一、高频板与高速板的定义及特点

高频板
高频板在电子产品中应用广泛,如无线电通信、雷达、卫星通信等领域。一般认为,在工作频率超过500MHz的场合下,就需要使用高频板。

特点在于其在高频工作环境下具备的传输性能。同时,高频板的板厚较薄,线宽、线距也比普通的PCB线路板更为精细。另外,高频板的介电常数特别小,因此可以减少信号损失,提高信号传输速率和接收灵敏度。高频板材一般使用RO4350B、RO4003C、F4B等材料。

高速板
高速板主要应用于计算机主板、工控机、测控仪器等领域。相较于高频板,高速板所涉及的调制解调频率较低,但速率较高,一般是Gbps级别

高速板的特点在于其线路的等长性能更好,在传输高速数字信号时具有更好的信号完整性和抗干扰能力。另外,高速板的板厚一般较厚,可以有效抑制EMI(电磁干扰)。高速板材常使用FR4、PI等材料。
二、高频板与高速板的区别
虽然高频板与高速板都是用于传输信号的PCB线路板,但二者在实际应用中有以下几个方面的区别。

1. 频率范围不同

高频板是在频率超过500MHz的频段使用的,而高速板主要是传输数码信号时使用的,在调制解调频率为几十MHz到GHz级别之间。

2. 线宽、板厚不同

因为高频板需要采用微细线路,因此其线宽、线距比高速板更细,板厚也相对较薄。而高速板的线路等长性较好,因此线宽、线距可以适当加大一些,板厚也可以稍微加厚一些。

3. 材料不同

高频板常使用的材料相较于高速板的介电常数要小一些,以减少信号传输时损失。而高速板常使用的材料通常较一般PCB线路板要好一些,如FR4高TG材料。

三、高频板与高速板的应用场景

1. 高频板的应用场景

在无线电通信、雷达、卫星通信等领域,高频板应用广泛。由于采用了微细线路,可以减少信号损失、提高传输速率和接收灵敏度,因此可在高频的环境下信号的传输和接收的准确性。

2. 高速板的应用场景

在计算机主板、工控机、测控仪器等领域,高速板应用较多。由于其线路的等长性较好,可以在传输高速数字信号时具有更好的信号完整性和抗干扰能力。

高频板和高速板虽然都是用于传输信号的PCB线路板,但它们具备不同的特点和应用场景。在实际选材和应用中,需要结合具体的需求和场景,选择合适的PCB线路板类型,才能确保产品的性能稳定和信号传输的准确性。

PCB线路板铜箔的基本知识
一、铜箔简介


  Copper foil(铜箔):一种阴质性电解材料,沉淀于线路板基底层上的一层薄的、连续的金属箔,它作为PCB的导电体。它容易粘合于绝缘层,接受印刷保护层,腐蚀后形成电路图样。Copper mirror test(铜镜测试):一种助焊剂腐蚀性测试,在玻璃板上使用一种真空沉淀薄膜。



  铜箔由铜加一定比例的其它金属打制而成,铜箔一般有90箔和88箔两种,即为含铜量为90%和88%,尺寸为16*16cm。铜箔是用途广泛的装饰材料。如:宾馆酒店、寺院佛像、金字招牌、瓷砖马赛克、工艺品等。



二、产品特性


  铜箔具有低表面氧气特性,可以附着与各种不同基材,如金属,绝缘材料等,拥有较宽的温度使用范围。主要应用于电磁屏蔽及抗静电,将导电铜箔置于衬底面,结合金属基材,具有优良的导通性,并提供电磁屏蔽的效果。可分为:自粘铜箔、双导铜箔、单导铜箔等。



  电子级铜箔(纯度99.7%以上,厚度5um-105um)是电子工业的基础材料之一电子信息产业快速发展,电子级铜箔的使用量越来越大,产品广泛应用于工业用计算器、通讯设备、QA设备、锂离子蓄电池,民用电视机、录像机、CD播放机、复印机、电话、冷暖空调、汽车用电子部件、游戏机等。国内外市场对电子级铜箔,尤其是电子级铜箔的需求日益增加。有关机构预测,到2015年,中国电子级铜箔国内需求量将达到30万吨,中国将成为世界印刷线路板和铜箔基地的大制造地,电子级铜箔尤其是箔市场看好。



三、铜箔的供应状况


  工业用铜箔可常见分为压延铜箔(RA铜箔)与点解铜箔(ED铜箔)两大类,其中压延铜箔具有较好的延展性等特性,是早期软板制程所用的铜箔,而电解铜箔则是具有制造成本较压延铜箔低的优势。由于压延铜箔是软板的重要原物料,所以压延铜箔的特性改良和价格变化对软板产业有一定的影响。



  由于压延铜箔的生产厂商较少,且技术上也掌握在部份厂商手中,因此客户对价格和供应量的掌握度较低,故在不影响产品表现的前提下,用电解铜箔替代压延铜箔是可行的解决方式。但若未来数年因为铜箔本身结构的物理特性将影响蚀刻的因素,在细线化或薄型化的产品中,另外高频产品因电讯考量,压延铜箔的重要性将再次提升。



  生产压延铜箔有两大障碍,资源的障碍和技术的障碍。资源的障碍指的是生产压延铜箔需有铜原料支持,占有资源十分重要。另一方面,技术上的障碍使更多新加入者却步,除了压延技术外,表面处理或是氧化处理上的技术亦是。性大厂多半拥有许多技术专利和关键技术Know How,加大进入障碍。若新加入者采后处理生产,又受到大厂的成本拑制,不易成功加入市场,故的压延铜箔仍属于强占性的市场。



四、铜箔的发展情况


  铜箔英文为electrodepositedcopperfoil,是覆铜板(CCL)及印制线路板(PCB)制造的重要的材料。在当今电子信息产业高速发展中,电解铜箔被称为:电子产品信号与电力传输、沟通的“神经网络”。2002年起,中国印制线路板的生产值已经越入世界第3位,作为PCB的基板材料——覆铜板也成为世界上第3大生产国。由此也使中国的电解铜箔产业在近几年有了突飞猛进的发展。为了了解、认识世界及中国电解铜箔业发展的过去、现在,及展望未来,据中国环氧树脂行业协会特对它的发展作回顾。



  从电解铜箔业的生产部局及市场发展变化的角度来看,可以将它的发展历程划分为3大发展时期:美国创建初的世界铜箔企业及电解铜箔业起步的时期;日本铜箔企业全面垄断世界市场的时期;世界多极化争夺市场的时期。

PCB线路板塞孔工艺
导通孔起线路互相连结导通的作用。电子行业的发展,同时也促进PCB的发展,也对印制板制作工艺和表面贴装技术提出更高要求,塞孔工艺应运而生。现在,就让工程师为你详解PCB线路板塞孔工艺:
一 、热风整平后塞孔工艺

采用非塞孔流程进行生产,热风整平后用铝片网版或者挡墨网来完成所有要塞的导通孔塞孔。工艺流程为:板面阻焊→热风整平→塞孔→固化。

此工艺能热风整平后导通孔不掉油,但是易造成塞孔油墨污染板面、不平整。

二 、热风整平前塞孔工艺

1、用铝片塞孔、固化、磨板后进行图形转移

此工艺流程用数控钻床,钻出须塞孔的铝片,制成网版,进行塞孔。工艺流程为:前处理→ 塞孔→磨板→图形转移→蚀刻→板面阻焊。

此方法可以导通孔塞孔平整,热风整平不会有爆油、孔边掉油等质量问题,但该工艺要求一次性加厚铜,对整板镀铜要求很高。

2、用铝片塞孔后直接丝印板面阻焊

此工艺流程用数控钻床,钻出须塞孔的铝片,制成网版,安装在丝印机上进行塞孔,停放不超过30分钟,用36T丝网直接丝印板面阻焊。工艺流程为:前处理—塞孔—丝印—预烘—曝光一显影—固化。

该工艺能导通孔盖油好,塞孔平整,热风整平后导通孔不上锡,孔内不藏锡珠,但容易造成固化后孔内油墨上焊盘,可焊性不良等。

3、铝片塞孔、显影、预固化、磨板后进行板面阻焊

用数控钻床,钻出要求塞孔的铝片,制成网版,安装在移位丝印机上进行塞孔,塞孔饱满,再经过固化,磨板进行板面处理。此工艺流程为:前处理—塞孔一预烘—显影—预固化—板面阻焊。

该工艺能热风整平后过孔不掉油、爆油,但过孔藏锡珠和导通孔上锡难以完全解决。

4、 板面阻焊与塞孔同时完成

此方法采用36T(43T)的丝网,安装在丝印机上,采用垫板或者钉床,在完成板面的同时,将所有的导通孔塞住。工艺流程为:前处理—丝印—预烘—曝光—显影—固化。

该工艺时间短,设备的利用率高,能热风整平后过孔不掉油、导通孔不上锡,但是由于采用丝印进行塞孔,过孔内存着大量空气,造成空洞,不平整,有少量导通孔藏锡。

浅析pcb线路板的热可靠性问题
一般情况下,pcb线路板板上的铜箔分布是非常复杂的,难以准确建模。因此,建模时需要简化布线的形状,尽量做出与实际线路板接近的ANSYS模型线路板板上的电子元件也可以应用简化建模来模拟,如MOS管、集成电路块等。


热分析

贴片加工中热分析可协助设计人员确定pcb线路板上部件的电气性能,帮助设计人员确定元件或线路板是否会因为高温而烧坏。简单的热分析只是计算线路板的平均温度,复杂的则要对含多个线路板的电子设备建立瞬态模型。热分析的准确程度终取决于线路板设计人员所提供的元件功耗的准确性。



在许多应用中重量和物理尺寸非常重要,如果元件的实际功耗很小,可能会导致设计的安全系数过高,从而使线路板的设计采用与实际不符或过于保守的元件功耗值作为根据进行热分析。与之相反(同时也更为严重)的是热安全系数设计过低,也即元件实际运行时的温度比分析人员预测的要高,此类问题一般要通过加装散热装置或风扇对线路板进行冷却来解决。这些外接附件增加了成本,而且延长了**时间,在设计中加入风扇还会给可靠性带来不稳定因素,因此线路板板主要采用主动式而不是被动式冷却方式(如自然对流、传导及辐射散热)。



线路板简化建模

建模前分析线路板中主要的发热器件有哪些,如MOS管和集成电路块等,这些元件在工作时将大部分损耗功率转化为热量。因此,建模时主要需要考虑这些器件。



此外,还要考虑线路板基板上,作为导线涂敷的铜箔。它们在设计中不但起到导电的作用,还起到传导热量的作用,其热导率和传热面积都比较大线路板板是电子电路不可缺少的组成部分,它的结构由环氧树脂基板和作为导线涂敷的铜箔组成。环氧树脂基板的厚度为4mm,铜箔的厚度为0.1mm。铜的导热率为400W/(m℃),而环氧树脂的导热率仅为0.276W/(m℃)。尽管所加的铜箔很薄很细,却对热量有强烈的引导作用,因而在建模中是不能忽略的。

PCB线路板调试技术之六类模块

在PCB抄板及设计工作中,我们常常要对电路板进行调试与测试,六类模块电路板的调试就是其中一种,为了能让大家更好的理解六类模块电路板的调试技术,我先给大家简单的介绍一下六类模块。六类模块的核心部件是线路板,其设计结构、制作工艺基本上就决定了产品的性能指标,六类模块执行的标准是 EIA/TIA 568B.2-1,当中为重要的参数是插入损耗、回波损耗、近端串扰等。

插入损耗 (Insert Loss):由于传输通道阻抗的存在,它会随着信号频率的增加而使信号的高频分量衰减加大,衰减不仅与信号频率有关,也与传输距离有关,随着长度的增加,信号衰减也会随着增加。回波损耗(Return Loss):由于产品中阻抗发生变化,就会产生局部震荡,致使信号反射,被反射到发送端的一部分能量会形成噪音,导致信号失真,降低传输性能。如全双工的千兆网,会将反射信号误认为是收到的信号而引起有用信号的波动,造成混乱,反射的能量越少,就意味着通道采用线路的阻抗一致性越好,传输信号越完整,在通道上的噪音就越小。回波损耗RL的计算公式:回波损耗=发射信号÷反射信号。
  

在设计中,阻抗的全线路一致性以及与100欧姆阻抗的六类线缆配合是解决回波损耗参数失效的有效手段。例如PCB线路的层间距离不均匀、传输线路铜导体截面变化、模块内的导体与六类线缆导体不匹配等,都会引起回波损耗参数变化。近端串扰(NEXT): NEXT是指在一对传输线路中,一对线对另一对线的信号耦合,即为当一条线对发送信号时,在另一条相邻的线对收到的信号。这种串扰信号主要是由于临近绕对通过电容或电感耦合过来的,通过补偿的办法,抵消、减弱其干扰信号,使其不能产生驻波是解决该参数失效的主要办法。

在模块试制阶段,用理论做指导,以计算机辅助设计为依据,就能很快的达到预期效果。在国内进行的六类模块PCB设计中,主要以线路对角补偿理论做依据,进行大量的试制工作,同样也可达到预期效果。模块与插头引起的信号外漏现象会发生相互间的信号干涉,为防止信号干涉现象,在平衡链路中导体进行扭绕,达到平衡传输的目的,扭绕结构会造成信号间的相位变化,也会增大线路上的信号衰减,这个结构称之为非屏蔽结构(UTP)。4对平衡双绞线中,每对线的绞距不同,线缆尾端使用模块化的连接件,形成连接件和接插件之间的相连,相互连接区内形成导体之间进行的平衡结构,即为六类系统的链路。在链路内产生了在平衡线路中所发生的信号干扰现象,即为串扰,解决串扰问题是进行高速通信用连接件制造的核心技术。
  

在接触端子之间产生接触损失会导致衰减、反射损失等现象,这种损失在高速信号传输时,会产生障碍和故障,解决这类问题是进行高速通信用连接件制造的核心技术。在模块与插头的连接线路中,插头内的每对连接端子是平衡线路,平衡线路中导体会产生信号外漏及阻抗损耗,阻碍通信的大因素就是信号外漏。可通过研究E场和H场解决此类问题或从研究反向衰减的方法中寻找解决方案,这是高速通信用连接件制造的核心技术。E场和H场平衡线路上所发生的信号干扰,即电磁场干扰,可通过E场和H场的分布进行描述。



电子通信线路测试的主要参数是扫频下进行的相关测量,在这个频率信号上附加语音或数据包进行传输,传输速度越高频率越快。用信号外漏的解决方法来解释产生问题的插座信号外漏现象,基本的方法是根据电感和电容所发生的信号外漏仿真图,在信号集中区域收集信号并进行返送。在设计中,耦合电容的设计是关键参数,与耦合线路的长度、线间距离、宽度、补偿线路布置等有关。考虑到六类系统采用4对线同时传输信号,必然会对其产生综合远端串绕,可通过分析,进行计算机仿真,设计出补偿线路。国内同行一般进行的六类模块试制过程主要是在确定主干回路后,在设计出补偿回路,进行大量的方案设计和样品制作,在补偿线路、PCB层间结构基本确定后,后续工作主要是通过工艺改进,从而提。

PCB线路板贴干膜常见问题及解决方法汇总

随着电子行业的不断发展,产品的不断升级,为了节省板子的空间,很多板子在设计的时候的线都已经非常小了,以前的湿膜已经不能满足现在的图形转移工艺了,现在一般小线都用干膜来生产,那么我们在贴膜过程中有哪些问题呢,下面小编来介绍一下。
  PCB线路板贴干膜常见问题及解决方法汇总
1、干膜与铜箔表面之间出现气泡
(1)不良问题:选择平整的铜箔,是无气泡的关键。

解决方法:增大PCB贴膜压力,板材传递要轻拿轻放。

(2)不良问题:热压辊表面不平,有凹坑和胶膜钻污。

解决方法:定期检查和保护热压辊表面的平整。

(3)不良问题:PCB贴膜温度过高,导致部分接触材料因温差而产生皱皮。

解决方法:降低PCB贴膜温度。

2、干膜在铜箔上贴不牢

(1)不良问题:在处理铜箔表面是没有进行合理的清洁,直接上手操作会留下油污或氧化层。

解决方法:应戴手套进行洗板。

(2)不良问题:干膜溶剂品质不达标或已过期。

解决方法:生产厂家应该选择干膜以及定期检查干膜保质期。

(3)不良问题:传送速度快,PCB贴膜温度低。

解决方法:改变PCB贴膜速度与PCB贴膜温度。

(4)不良问题:加工环境湿度过高,导致干膜粘结时间延长。

解决方法:保持生产环境相对湿度50%。

3、干膜起皱

(1)不良问题:干膜太黏,在操作过程中小心放板。

解决方法:一但出现碰触应该及时进行处理。

(2)不良问题:PCB贴膜前板子太热。

解决方法:板子预热温度不宜太高。

4、余胶

(1)不良问题:干膜质量差。

解决方法:更换干膜。

(2)不良问题:曝光时间太长。

解决方法:对所用的材料有一个了解进行合理的曝光时间。

(3)不良问题:显影液失效。

解决方法:换显影液。

PCB多层板表面处理方式分类:
1.热风整平涂布在PCB表面的熔融锡铅焊料和加热压缩空气流平(吹气平整)过程。使其形成抗铜氧化涂层,可提供良好的可焊性。热风焊料和铜在结合处形成铜 - 锡金属化合物,其厚度约为1~2mil;


2.有机抗氧化(OSP)通过化学方法在清洁的裸铜表面上生长一层有机涂层。这种PCB多层板薄膜具有抗氧化,耐热冲击,防潮,以保护铜表面在正常环境下不再生锈(氧化或硫化等);同时,在随后的焊接温度下,焊接用焊剂很容易快速去除;

3.镍金化学在铜表面,涂有厚实,良好的镍金合金电性能,可以保护PCB多层板。很长一段时间不像OSP,它只用作防锈层,它可以用于长期使用PCB并获得良好的电能。此外,它还具有其他表面处理工艺所不具备的环境耐受性;

4.化学镀银沉积在OSP与化学镀镍/镀金之间,PCB多层板工艺简单快速。暴露在炎热,潮湿和污染的环境中仍然提供良好的电气性能和良好的可焊性,但失去光泽。由于银层下没有镍,沉淀的银不具有化学镀镍/浸金的所有良好的物理强度;

5.在PCB多层板表面导体上镀镍金,镀一层镍然后镀一层金,镀镍主要是为了防止金与铜之间的扩散。有两种类型的镀镍金:软金(,这意味着它看起来不亮)和硬金(光滑,坚硬,耐磨,钴和其他元素,表面看起来更亮)。软金主要用于芯片包装金线;硬金主要用于非焊接电气互连。

6.PCB混合表面处理技术选择两种或两种以上表面处理方法进行表面处理,常见的形式有:镍金防氧化,镀镍金沉淀镍金,电镀镍金热风整平,常见形式有:镍金防 - 氧化,镀镍金沉淀镍金,电镀镍金热风整平,重镍和金热风平整。尽管PCB多层板表面处理过程的变化并不显着,并且似乎有些牵强,但应该注意的是,长期缓慢的变化将导致的变化。随着对环境保护的需求不断增加,PCB的表面处理工艺必将在未来发生变化。

如何为柔性线路板(FPC板)选用保护膜?

柔性线路板FPC板上用什么保护膜来保护呢?既要防尘防污防静电,又要有效贴合板面,防静电PET保护膜合适。



  柔性电路板保护膜



  柔性电路板又称“软板”,即FPC板。是用柔性的绝缘基材制成的印刷电路。柔性电路提供优良的电性能,能满足更小型和更高密度安装的设计需要,也有助于减少组装工序和增强可靠性。柔性电路板是满足电子产品小型化和移动要求的惟一解决方法。可以自由弯曲、卷绕、折叠,可以承受数百万次的动态弯曲而不损坏导线,可依照空间布局要求任意安排,并在三维空间任意移动和伸缩,从而达到元器件装配和导线连接的一体化;柔性电路板可大大缩小电子产品的体积和重量,适用电子产品向高密度、小型化、高可靠方向发展的需要。



  因此,FPC板在航天、军事、移动通讯、手提电脑、计算机外设、PDA、数字相机等领域或产品上得到了广泛的应用。



  但是FPC板在生产过程中很容易出现静电击穿现象。目前解决这一问题主要依靠市面上防静电台垫,而该产品靠静电剂内添并迁移到台垫表面,然后吸收空气水分子形成导电通路,从而对FPC板有防静电效果,同时该产品易受空气、湿度等环境因素影响,静电排放效果差。尤其在北方气候干燥地区,表面电阻值升高,随着时间推移,防静电指标衰减越来越快,造成静电排放不稳定,这样容易击穿FPC板上线路芯片,造成设备运行损坏。同时,该产品又不能随同FPC板搬运,不能起到随时防护作用。在应用环节上缺陷已十分明显,已不能满足目前FPC板发展技术的要求。



  现FPC板正处于规模小但迅猛发展之中。聚合物厚膜法是一种、低成本的生产工艺。该工艺在廉价的柔性基材上,选择性地网印导电聚合物油墨。其代表性的柔性基材为PET。聚合物厚膜法导体包括丝印金属填料或碳粉填料。聚合物厚膜法本身很清洁,使用无铅的SMT胶黏剂,不必蚀刻。因其使用加成工艺且基材成本低,聚合物厚膜法电路是铜聚酰亚胺薄膜电路价格的1/10;是刚性电路板价格的1/2~1/3。聚合物厚膜法尤其适用于设备的控制面板。在移动电话和其他的便携产品上,聚合物厚膜法适合将印制电路主板上的元件、开关和照明器件转变成聚合物厚膜法电路。既节省成本,又减少能源消耗。



  防静电PET保护膜应用在“柔性线路板”上市场前景十分广阔,性能:透明防静电PET保护膜比较柔软,与FPC板硬度差不多,并且透明到可以观察到FPC表面工艺要求,而且又不与外界空气接触,当然也不会产生静电及粉尘。由于防静电保护膜两边都有防静电涂层,因此在与FPC板分离时又不会产生静电,当然也不会击穿FPC板上线路的芯片。这既解决了FPC板运输途中静电产生,同时又能进行粘合并且透明又不受空气、湿度等环境因素的影响。产品可广泛应用于半导体工业、LCD工业、电子装备及微电子设备业、电子电气、通讯制造、精密仪器、光学制造、医药工业及生物工程等行业工业领域以及高铁车厢、医院、家庭、办公领域,用于工业生产车间、试验室、机房,以及医院手术室、CT、X射线室、CCU、ICU病房等的地板、工作台面、墙面板等。

PCB板材的Tg值

业界长期以来,Tg值是常见的用来划分FR-4基材的等级指标,通常认为Tg值越高,材料的可靠性越高。

比如下图老wu在南亚上边截取的关于FR-4板材的说明:

Tg135℃,板材用途:主机板、消费类电子产品等

Tg180℃,板材用途:CPU主板,DDR3 内存基板,IC封装用基板等等。

基材对于印刷电路板的作用,就像印刷电路板对于电子器件的作用一样重要。按照PCB的基材按性质可分为有机基板和无机基板两个大的体系。

有机基板由酚醛树脂浸渍的多层纸层或环氧树脂、聚酰亚胺、氰酸酯、BT 树脂等浸渍的无纺布或玻璃布层组成。这些基板的用途取决于 PCB 应用所需的物理特性,如工作温度、频率或机械强度。

无机基板主要包括陶瓷和金属材料,如铝、软铁、铜。这些基板的用途通常取决于散热需要。

我们常用的刚性印制板基板属于有机基板,比如FR-4环氧玻纤布基板,是以环氧树脂作粘合剂,以电子级玻璃纤维布作增强材料的一类基板。

我们看到,FR-4以环氧树脂作为粘合剂,树脂材料有一个重要特性参数:玻璃化转变温度Tg(glass transition temperature),指的是材料从一个相对刚性或“玻璃”状态转变为易变性或软化状态的温度转变点。

玻璃态物质在玻璃态和高弹态之间相互可逆转化的温度。啥意思?就是说FR-4基板的粘合剂环氧树脂若温度低于Tg,这时材料处于刚硬的“玻璃态”。当温度Tg时,材料会呈现类似橡胶般柔软可挠的性质。对!它~变【软】了~ 图片



玻璃态

树脂材料处于温度Tg以下的状态为坚硬的固体即玻璃态。在外力作用下有一定的变形但变形可逆,即外力消失后,其形变也随之消失,是大多数树脂的使用状态。

高弹态

当树脂受热温度超过Tg时,无定形状态的分子链开始运动,树脂进入高弹态。处于这一状态的树脂类似橡胶状态的弹性体,但仍具有可逆的形变性质。

注意,温度超过Tg值后,材料逐渐变软,是逐渐,而且只要树脂没有发生分解,当温度冷却到Tg值以下时,它还是可以变回之前性质相同的刚性状态。

氮素,有个Td值,叫热分解温度,树脂类材料被加热至某一高温点时,树脂体系开始分解。树脂内的化学键开始断裂并伴随有挥发成分溢出,那PCB基材里的树脂就变少了。Td点指的是这个过程开始发生的温度点。Td通常定义为失去原质量5%时对应的分解温度点。但这5%对于多层PCB来说是非常高的了。

我们知道,影响PCB上传输线特性阻抗的因素有,线宽,走线与参考平面间距,板材介电常数等等。而基板材料的树脂量对介电特性有很大的影响,而且树脂挥发后对控制走线与参考平面的间距也有影响。

对于无铅焊接工艺需要考虑这个Td值,比如传统的锡铅焊接工艺温度范围为210~245℃,而无铅焊接工艺温度范围为240~270℃。

下边两个这个截图是老wu在建滔官网上下载的两份板材的参数表做的对比,左边的是FR-4常规系列板材,右边是FR-4无铅板材

常规FR4 板材 KB-6160 Tg值为135℃,5%质量损失Td值为305℃

FR4无铅板材 KB-6168LE Tg值为 185℃,5%质量损失Td值为359℃

我们看到,常规FR4板材的Td值都在300℃以上,而有铅焊接工艺温度范围在240~270℃,Td值完全满足哇,为啥还要搞个无铅版本呢?

正如老wu上边所述,5%的树脂质量挥发率对于需要控制阻抗的多层PCB来说显得太大了,对于锡铅焊接工艺来说,210~245℃的温度材料基本不会出现明显的热分解,而无铅焊接的240~270℃温度区间,对于普通Tg FR-4 基材来说,已经开始损失1.5~3%的树脂质量。虽然不到IPC标准所要求的5%,但这损失的树脂质量也不可忽视。同时,这个分解水平,还可能会影响基材长期的可靠性或导致焊接过程中出现分层或空洞的缺陷,特别是需要多次焊接的过程或存在返修加热的情况。

所以,如果采用无铅焊接工艺的话,除了考虑Tg值,还要考虑Td值。

基板材料的性能在Tg值以上和在Tg值以下时差异很大,不过,Tg值一般被描述为一个非常的温度值,比如Tg135,并不是说温度一超过135℃基板就变得软趴趴,而是当温度接近Tg值开始,材料的物料性能会开始改变,它是一个逐步变化的过程。

树脂体系的Tg值对材料的性能影响主要有两个方面:

热膨胀的影响

树脂体系固化时间

板材受热膨胀,脑补一下画面,SMT焊接时BGA焊盘的间距是不是也就跟着变化了?而且,热膨胀导致的机械应力,会对PCB上的走线和焊盘的连接造成细微的裂纹,这些裂纹可能在PCB生产完毕后的开/短路测试时不会被发现,而在SMT等二次加热后故障就显现出来了,这往往让人很懵逼,而糟糕的情况是,SMT加热时暗病都没出现,在产品出去之后,在冷热交替的使用环境中,板材的受热膨胀让这些细微的裂纹随机性的发生,造成设备故障。

基板材料热性能参数除了标准Tg、Td值,还有热膨胀系数CTE,有X/Y轴方向的CTE也有Z轴方向的CTE。

Z轴的CTE对PCB的可靠性有很重要的影响。由于镀覆孔贯穿PCB的Z轴,所以基材中的热膨胀和收缩会导致镀覆孔扭曲和塑性形变,也会使PCB表面的铜焊盘变形。

而SMT时,X/Y轴的CTE则变得非常重要。特别是采用芯片级封装(CSP)和芯片直接贴装时,CTE的重要性更为,同时,X/Y轴的CTE也会影响覆铜箔层压板或PCB的内层附着力和抗分层能力。特别是采用无铅焊接工艺的PCB来说,每一层中的X/Y轴CTE值就显得尤其重要了。

那么,是不是高Tg值的基材就是好呢?在关于Tg值的许多讨论中,往往认为较高的Tg值总是对基材有利的,但情况也并非总是如此。可以确定的是,对于一种给定的树脂体系,高Tg值基材在受热时的材料高速率膨胀开始时间要相对晚一些,而整体膨胀则与材料的种类有很大关系。低Tg值的基材可能会比高Tg值的基材表现出更小的整体膨胀,这主要与树脂本身的CTE值,或者树脂配方中加入无机填料 降低了基材的CTE有关。

同时还要注意的是,有些低端的FR-4材料,标准Tg值是140℃的基材比标准Tg值是170℃的基材具有更高的热分解温度Td值。如上边老wu所述,Td对于无铅焊接来说是一个很重要的指标,一般建议选择Td数值较大的,而的FR-4往往同时具备高的Tg值和高Td值。

此外,高Tg值的基材往往比低Tg值的基材刚性更大且更脆,这往往会影响PCB制造过程的生产效率,特别是钻孔工序。

比如某创就发帖子说明,随着板子越来越密,过孔与过孔之间的间隙越来越小,对于材料要求越来越高,为此某创将提供TG=155的中TG板材为多层板收费服务!

为啥多收费?

TG=155的板材比TG=135的成本高20%左右,嗯 来料贵了

因为钻孔,中TG用新钻钻咀效果更佳(一般钻咀能磨4次),因为太硬

压合时间:普通TG=135的只需要压合110分钟,而中TG=1 55的压合150分钟

为啥要提供中或高Tg板材,板厂那边说,原因之一是因为高密的过孔,普通TG的过孔间距不能小于12MIL,而中TG不能小于 10MIL,因为板材有玻璃布,在钻孔的时候会有一些拉伤,两个过孔之间你拉一点我拉一点就形成了灯芯效应,而中TG因为硬,板材内的成份不一样,又加上用新钻咀能有效的防范灯芯效应,后续对于难度高的多层板,过孔间间隙太密,某创会强制客选择用中TG板材生产!

原因之二是基板的Tg提高了, 印制板的耐热性、耐潮湿性、耐化学性、耐稳定性等特征都会提高和改善。TG值越高,板材的耐温度性能越好,尤其在无铅喷锡制程中,高Tg应用比较多。

这是从板厂的可制造性方面考虑,而如果是PCB装配采用无铅焊接工艺的话,还需要综合考虑玻璃化转变温度Tg、分解温度Td、热膨胀系数CTE、吸水率、分层时间等等因素。

深圳市赛孚电路科技有限公司为你提供的“高精密电路板厂商”详细介绍
在线留言

*详情

*联系

*手机

推荐信息

PCB机元器>多层电路板>高精密电路板
信息由发布人自行提供,其真实性、合法性由发布人负责;交易汇款需谨慎,请注意调查核实。
触屏版 电脑版
@2009-2024 京ICP证100626