挑选高频高速PCB材料重要指标:
在选择用于高频电路的PCB所用的基板时,要特别考察材料DK,在不同频率下的变化特性。而对于侧重信号高速传输方面的要求,或特性阻抗控制要求,则考察DF及其在频率、温湿度等条件下的性能。
一般型基板材料在频率变化的条件下,表现出DK、DF值变化较大的规律。特别是在l MHz到l GHz的频率内,它们的DK、DF值的变化更加明显。例如,一般型环氧树脂一玻纤布基的基板材料(一般型FR-4)在lMHz的频率下的DK值为4.7,而在lGHz的频率下的DK值变化为4.19。超过lGHz以上,它的DK值的变化趋势于平缓。其变化趋势是随着频率的增高,而变小(但变化幅度不大),例如在l0GHz下,一般FR一4的DK值为4.15,具有高速、高频特性的基板材料在频率变化的情况下,DK值变化较小,自lMHz到lGHz的变化频率下,DK多保持在0.02范围的变化。其DK值在由低到高不同频率条件下,略微有下降的趋向。
一般型基板材料的介质损失因子(DF),在受到频率变化(特别是在高频范围内的变化)的影响而产生DF值的变化要比DK大。其变化规律是趋于增大,因此,在评价一种基板材料的高频特性时,要对其考察的是它的DF值变化情况。具有高速高频特性的基板材料,在高频下变化特性方面,一般型基板材料存在着两类明显的不同的两类:一类是随着频率的变化,它的(DF)值变化甚小。还有一类是在变化幅度上与一般型基板材料尽管相近,但它本身的(DF)值较低。
如何选择高频高速板材
选择PCB板材在满足设计需求、可量产性、成本中间取得平衡点。简单而言,设计需求包含电气和结构可靠性这两部分。通常在设计非常高速的PCB板子(大于GHz的频率)时这板材问题会比较重要。例如,现在常用的FR-4材质,在几个GHz的频率时的介质损Df(Dielectricloss)会很大,可能就不适用。
举例来说,10Gb/S高速数字信号是方波,它可以看作是不同频率的正弦波信号的叠加。因此10Gb/S包含许多不同频率信号:5Ghz的基波信号、3阶15GHz、5阶25GHz、7阶35GHz信号等。保持数字信号的完整性以及上下沿的陡峭程度和射频微波(数字信号的高频谐波部分达到了微波频段)的低损耗低失真传输一样。因此,在诸多方面,高速数字电路PCB选材和射频微波电路的需求类似。
在实际的工程操作中,高频板材的选择看似简单但需要考虑的因素还是非常多的,通过本文的介绍,作为PCB设计工程师或者高速项目负责人,对板材的特性及选择有一定的了解。了解板材电性能、热性能、可靠性等。并合理使用层叠,设计出一块可靠性高、加工性好的产品,各种因素的考量达到佳化。
确保信号完整性的PCB板设计准则
信号完整性(SI)问题解决得越早,设计的效率就越高,从而可避免在电路板设计完成之后才增加端接元器件.随着IC输出开关速度的提高,不管信号周期如何,几乎所有设计都遇到了信号完整性问题.即使过去没有遇到SI问题,但是随着电路工作频率的提高,一定会遇到信号完整性的问题.SI和EMC在PCB布线之前要进行仿真和计算,然后,PCB板设计就可以遵循一系列非常严格的设计规则,在有疑问的地方,可以增加端接元器件,从而获得尽可能多的SI安全裕量.电源完整性(PI)与信号完整性(SI)是密切关联的,电源完整性直接影响终PCB板的信号完整性.而且很多情况下,影响信号畸变的主要原因是电源系统.EMC设计目前主要采用设计规则检查方式,很重要的一点,就是企业逐步建立和完善适合企业特定领域产品的设计规范,形成一整套的EMC设计规则集.这些在国外的大公司非常普及,如三星和SONY.这些规则由人或者EDA软件来检查核对.
PCB板的静电释放(ESD)设计
许多产品设计工程师通常在产品进入到生产环节时才着手考虑抗静电释放(ESD)的问题。如果电子设备不能通过抗静电释放测试,通常终的方案都要采用昂贵的元器件,还要在制造过程中采用手工装配,甚至需要重新设计。因此,产品的进度势必受到影响。即使经验丰富的设计工程师,也可能并不知道设计中的哪些部分有利于抗静电释放(ESD)。大多数电子设备在生命期内99%的时间都处于一个充满ESD的环境之中,ESD可能不自人体、家具、甚至设备自身内部。电子设备完全遭受ESD损毁比较少见,然而ESD干扰却很常见,它会导致设备锁死、复位、数据丢失和不可靠。其结果可能是在寒冷干燥的冬季电子设备经常出现故障,但是维修时又显示正常,这样势必影响用户对电子设备及其制造商的信心。
ESD产生的机理
一个允电的导体接近另一个导时,两个导体之间会建立一个很强的电场,产生由电场引起的击穿。当两个导体之间的电压超过它们之间空气和绝缘介质的击穿电压时,就会产生ESD电弧。在0.7ns到10ns的时间里,ESD电弧电流会达到几十安培甚至超过100A。ESD电弧会产生一个频率范围在1MHz~500MHz的强磁场,并感性耦合到邻近的每一个布线环路,在距离ESD电弧10cm范围产生15A以上的电流,4KV以上的高压。ESD电弧将一直维持到两个导体接触短路或者电流低到不能维持电弧为止。
抗ESD的PCB布局与布线设计
尽可能使用多层PCB板结构,在PCB板内层布置的电源和地平面。采用旁路和退耦电容。尽量将每一个信号层都紧靠一个电源层或地线层,对于顶层和底层表面都有元器件、具有很短连接线以及许多填充地的高密度PCB,可以考虑使用内层走线。
确保每一个功能电路和各功能电路之间的元器件布局尽可能紧凑,对易受ESD影响的电路或敏感元器件,应该放在靠近PCB板中心的区域,这样其它的电路可以为它们提供一定的屏蔽作用。在能被ESD直接击中的区域,每一个信号线附近都要布一条地线。
在ESD容易进入的设备I/0接口处以及人手经常需要触摸或操作的位置,比如复位键、通讯口、开/关机键、功能按键等。通常在接收端放置瞬态保护器、串联电阻或磁珠。
要确保信号线尽可能短,信号线的长度大于12inch(30cm)时,一定要平行布一条地线。
确保信号线和相应回路之间的环路面积尽可能小,对于长信号每隔几厘米或几英寸调换信号线和地线的位置来减小环路面积。
确保电源和地之间的环路面积尽可能小,在靠近集成电路芯片(IC)每一个电源管脚的地方放置一个高频电容。
在可能的情况下,要用地填充未使用的区域,每隔<2inch(5cm)距离将所有层的填充地连起来。
电源或地平面上开口长度超过8mm时,要用窄的导线将开口两侧连接起来。
复位线、中断信号线、或者边沿触发信号线不能布置在靠近PCB板边沿的地方。
在PCB板的整个外围四周布置环形地通路,尽可能使所有层的环形地宽度大于100mil。每隔500mil用过孔将所有层的环形地连接起来,信号线距离环形地>20mil(0.5mm)。