应力管是一种体积电阻率适中(1010-1012Ω?cm),介电常数较大(20--25)的特殊电性参数的热收缩管,利用电气参数强迫电缆绝缘屏蔽断口处的应力疏散成沿应力管较均匀的分布。这一技术只能用于35kV及以下电缆附件中。因为电压等级高时应力管将发热而不能工作。其使用中关键技术问题是: 要应力管的电性参数达到上述标准规定值方能可工作。 三、中低压电缆附件主要种类和关键技术问题中低压电缆附件目前使用得比较多的产品种类主要有热收缩附件、预制式附件、冷缩式附件。它们分别有以下特点:(一)热收缩附件。所用材料一般为以聚乙烯、乙烯-醋酸(EVA)及乙丙橡胶等多种材料组分的共混物组成。该类产品主要采用应力管处理电应力集中问题。亦即采用参数控制法缓解电场应力集中。主要优点是轻便、安装容易、性能尚好,价格便宜。应力管是一种体积电阻率适中(1010-1012Ωcm),介电常数较大(20--25)的特殊电性参数的热收缩管,利用电气参数强迫电缆绝缘屏蔽断口处的应力疏散成沿应力管较均匀的分布。这一技术一般用于35kV及以下电缆附件中。因为电压等级高时应力管将发热而不能可靠工作。 二、电缆终端电应力控制方法电应力控制是中高压电缆附件设计中的极为重要的部分。电应力控制是对电缆附件内部的电场分布和电场强度实行控制,也就是采取适当的措施,使得电场分布和电场强度处于常规状态,从而提高电缆附件运行的可靠性和使用寿命。 对于电缆终端而言,电场畸变为严重,影响终端运行可靠性较大的是电缆外屏蔽切断处,而电缆中间接头电场畸变的影响,除了电缆外屏蔽切断处,还有电缆末端绝缘切断处。为了改善电缆绝缘屏蔽层切断处的电应力分布,一般采用以下几种方法:(一)几何形状法。采用应力锥缓解电场应力集中:应力锥设计是常见的方法,从电气的角度上来看也是很可靠的有效的方法。应力锥通过将绝缘屏蔽层的切断处进行延伸,使零电位形成喇叭状,改善了绝缘屏蔽层的电场分布,降低了电晕产生的可能性,减少了绝缘的破坏,了电缆的运行寿命。 采用应力锥设计的电缆附件有绕包式终端、预制式终端、冷缩式终端。