SiC PiN 的击穿电压很高,开关速度很快,重量很轻,并且体积很小,它在 3KV以上的整流器应用领域更加具有优势。2000年Cree公司研制出19.5 KV的台面PiN二极管,同一时期日本的 Sugawara 研究室也研究出了 12 KV 的台面 PiN 二极管。2005 年 Cree 公司报道了 10 KV、3.75 V、50 A 的 SiC PiN 二极管,其 10 KV/20 A PiN二极管系列的合格率已经达到 40%。
国内的SiC功率器件研究方面因为受到 SiC 单晶材料和外延设备的限制起步比较晚,但是却紧紧跟踪国外碳化硅器件的发展形势。国家十分重视碳化硅材料及其器件的研究, 在国家的大力支持下经已经初步形成了研究 SiC 晶体生长、SiC器件设计和制造的队伍。电子科技大学致力于器件结构设计方面,在新结构、器件结终端和器件击穿机理方面做了很多的工作,并且提出宽禁带半导体器件优值理论和宽禁带半导体功率双极型晶体管特性理论。
金属与半导体的功函数不同,电荷越过金属/半导体界面迁移,产生界面电场,半导体表面的能带发生弯曲,从而形成肖特基势垒,这就是肖特基接触。金属与半导体接触形成的整流特性有两种形式,一种是金属与 N 型半导体接触,且 N 型半导体的功函数小于金属的功函数;另一种是金属与 P 型半导体接触,且 P 型半导体的功函数大于金属的功函数。
金属与 N 型 4H-SiC 半导体体内含有大量的导电载流子。金属与 4H-SiC 半导体材料的接触仅有原子大小的数量级间距时,4H-SiC 半导体的费米能级大于金属的费米能级。此时 N 型 4H-SiC 半导体内部的电子浓度大于金属内部的电子浓度,两者接触后,导电载流子会从 N 型 4H-SiC 半导体迁移到金属内部,从而使 4H-SiC 带正电荷,而金属带负电荷。电子从 4H-SiC 向金属迁移,在金属与 4H-SiC 半导体的界面处形成空间电荷区和自建电场,并且耗尽区只落在 N 型 4H-SiC 半导体一侧,在此范围内的电阻较大,一般称作“阻挡层”。自建电场方向由 N 型 4H-SiC 内部指向金属,因为热电子发射引起的自建场增大,导致载流子的扩散运动与反向的漂移运动达到一个静态平衡,在金属与4H-SiC 交界面处形成一个表面势垒,称作肖特基势垒。4H-SiC 肖特基二极管就是依据这种原理制成的。
肖特基二极管的反向阻断特性较差,是受肖特基势垒变低的影响。为了获得高击穿电压,漂移区的掺杂浓度很低,因此势垒形成并不求助于减小 PN 结之间的间距。调整肖特基间距获得与 PiN 击穿电压接近的 JBS,但是 JBS 的高温漏电流大于 PiN,这是来源于肖特基区。JBS 反向偏置时,PN 结形成的耗尽区将会向沟道区扩散和交叠,从而在沟道区形成一个势垒,使耗尽层随着反向偏压的增加向衬底扩展。这个耗尽层将肖特基界面屏蔽于高场之外,避免了肖特基势垒降低效应,使反向漏电流密度大幅度减小。此时 JBS 类似于 PiN 管。反向漏电流的组成主要由两部分:一是来自肖特基势垒的注入;二是耗尽层产生电流和扩散电流。
用碳化硅肖特基二极管替换快速PN 结的快速恢复二极管(FRD),能够明显减少恢复损耗,有利于开关电源的高频化,减小电感、变压器等被动元件的体积,使开关电源小型化,并降低产品噪音。