二次蒸汽在下一效中冷凝成产品水,剩余料液由泵输送到蒸发器的下一个效组中,该组的操作温度比上一组略高,在新的效组中重复喷淋、蒸发、冷凝过程。剩余的料液由泵往高温效组输送,后在温度高的效组中以浓缩液的形式离开装置。
生蒸汽被输入到效的蒸发管内并在管内冷凝,管外含盐水产生与冷凝量基本等量的二次蒸汽。
由于第二效的操作压力要低于效,二次蒸汽在经过汽液分离器后,进入下一效传热管。蒸发、冷凝过程在各效重复,每效均产生基本等量的蒸馏水,后一效的蒸汽在冷凝器中被含盐水冷凝。
效的冷凝液返回蒸汽发生器,其余效的冷凝液进入产品水罐,各效产品水罐相连。由于各效压力不同使产品水闪蒸,并将热量带回蒸发器。
这样,产品水呈阶梯状流动并被逐级闪蒸冷却,回收的热量可提高系统的总效率。被冷却的产品水由产品水泵输送到产品水储罐。这样生产出来的产品水是平均含盐量小于5mg/1的纯水。
浓盐水从效呈阶梯状流入一系列的浓盐水闪蒸罐中,过热的浓盐水被闪蒸以回收其热量。经过闪蒸冷却之后的浓盐水后经浓盐水泵排回大海。
从其上述原理可以看出,低温多效蒸发的技术优势体现在如下几个方面:
由于操作温度低,可避免或减缓设备的腐蚀和结垢。
由于操作温度低,可充分利用电厂和化工厂的低温废热,对低温多效蒸发技术而言,50℃-70℃的低品位蒸汽均可作为理想的热源,可大大减轻抽取背压蒸汽对电厂发电的影响。
进料含盐水的预处理更为简单。系统低温操作带来的另一大好处是大大的简化了含盐水的预处理过程。含盐水进入低温多效装置之前只需经过筛网过滤和加入少量阻垢剂就行,而不象多级闪蒸那样进行加酸脱气处理。
从我国目前的高盐废水处理思路来看,无论采用何种处理工艺,后都会将高浓度废水送至结晶器进行再蒸发,形成结晶盐,从而实现废水零排放。然而这种方式只是将污染从水转嫁到结晶杂盐中,并非零排放的初衷。水分离后剩下的结晶杂盐是危险废物,处置方式十分麻烦,焚烧无效,而填埋遇水又会形成新的污染源,因此只能按照危险废弃物处理,目前每吨结晶杂盐的处理费用约为3 000元。以年产杂盐30 000 t的煤化工企业为例,每年用于杂盐处理的费用便占到企业废水总处理费用的60%,处理费用惊人。因此对结晶盐的处理思路是资源化利用,即分质结晶。高盐废水中主要的成分一般是Na2SO4和NaCl,其含量可占废水中所有盐类的90%以上,如能将Na2SO4和NaCl与其他物质分离形成工业级的Na2SO4和NaCl,则可减少90%以上的固体废弃物。
供热锅炉保养与注意事项
内容摘要:供热锅炉腐蚀是锅炉安全运行的一大隐患,其危害性已广泛被认同,从而增强了人们的防腐意识,促进了锅炉防腐措施的落实,并取得了一定成效。但应强调的是腐蚀不单单发生在锅炉运行中,锅炉在停运期间,如果不采取适当的保护措施,进入锅炉内的氧气会使潮湿的金属表面产生腐蚀。
腐蚀是锅炉安全运行的一大隐患,其危害性已广泛被认同,从而增强了人们的防腐意识,促进了锅炉防腐措施的落实,并取得了一定成效。但应强调的是腐蚀不单单发生在锅炉运行中,锅炉在停运期间,如果不采取适当的保护措施,进入锅炉内的氧气会使潮湿的金属表面产生腐蚀,这种停用发生的腐蚀对锅炉所造成的危害,往往要比在运行中的腐蚀严重得多,因此,引起我们的高度重视。
添加阻垢剂后蒸发器运行对比
现场在对一效列管高压清洗后,开始试用投加阻垢剂,运行相同周期(25天),系统仍运行较为稳定,进料量几乎没有变化,现场对列管进行拆检查看,跟踪2个测试周期一效列管外观如下图:
由上图可以看出,添加阻垢剂后一效结垢明显改善,列管内壁只存在薄薄一层结垢物,未出现列管完全堵死情况,同样进行了高压清洗,由于结垢物质薄且脆,单支列管清洗时间只要1分钟左右,清洗1台蒸发器的时间只要0.5天就完成了,节省了大量的时间和降低了劳动强度。依据目前结垢情况判定,添加阻垢剂运行周期可延长至2个月以上。
原液进料量未添加阻垢剂,相同运行周期25天,加阻垢剂前平均进料量263.5m³/d,加阻垢剂后平均进料量315m³/d,说明添加阻垢剂后降低了三效列管的结垢生成速率,了蒸发器、长周期运行。
(1)由于三效蒸发系统进水温度较高,其中效维持在100℃左右,根据添加药剂前后列管结垢情况对比看,艾克阻垢剂高温下仍有的阻垢能力。
(2)蒸发器添加阻垢剂后,可以显著延缓结垢的产生或减少结垢量,与不使用阻垢剂的蒸发器运行相比较,添加阻垢剂后蒸发器运行周期大幅度延长,生产稳定运行,且减少了清洗列管的时间和降低了人力劳动强度,试验表明添加阻垢剂完全必要和能满足生产需求。
(3)对比增发器不加阻垢剂前频繁清洗的状况,添加阻垢剂有利于蒸发效率发挥,综合考虑下可节约蒸发单元的运行成本,具有较高的社会经济效益。