润滑脂是将稠化剂分散于液体润滑剂中所组成的一种稳定的固体或半固体产品,其中可以加入旨在改善润滑脂某种特性的添加剂及填料。
润滑脂的氧化性:
润滑脂在储存和工作时,其基础油和稠化剂都会氧化变质。 润滑脂中的金属皂还能促进润滑脂的氧化。 在基础油与稠化剂的的界面上易产生氧化反应,因为基础油中含有天然抗氧剂,而在润滑脂体系中被稠化剂吸附。 润滑脂的抗氧化性由氧弹测试。 另外, 润滑脂的储存性与其氧化诱导期有关。
润滑脂的胶体性:
润滑脂在工作和长期储存中抵抗分油的能力称为胶体性。润滑脂长期储存后,表面会有少量的油析出,此为分油。 润滑脂是一种胶体,在凝胶纤维之间依靠毛细管作用吸附一定量的基础油。 当胶体受到重力或外力以及当温度升高时,会使胶体结构解体析出基础油。 从而丧失润滑性。 润滑脂胶体体系的稳定性越好,则压力分油的量越少。 然而润滑脂在工作中,少量分油对其润滑性有利,并且是必需的。 毕竟这就是润滑脂产生液体润滑的主要途径。 润滑脂在轴承中使用时, 其分油性还与高速转动的轴承所产生的离心力有关。 因为离心力可使固、液介质分离。 所以轴承中的润滑脂的基础油损失达 30%时,轴承得不到良好润滑,此时润滑脂表现为失效。
润滑脂的抗水性:
如果润滑脂的抗水性不好,则润滑脂容易吸水乳化,并有可能因过量吸水导致润滑脂在润滑部件表面的粘附力下降,使润滑脂滑落。 润滑脂的抗水性与其基础油和稠化剂有关, 对矿物润滑油为基础油的脂,烃基稠化剂的抗水性好,不乳化、不吸水。 皂基润滑脂的抗水性取决于金属皂的水溶性。 因为,钠皂易溶于水,形成油/水型乳化体(O/W),使润滑脂失去润滑作用。锂、钙、钡、铝等皂基脂则形成稳定的水/油型乳化体(W/O)。对润滑脂的结构的变化影响不大。评价润滑脂的抗水性采用水淋试验或者滚筒试验(加水)。
润滑脂在机械中受到运动部件的剪切作用时,它能产生流动并进行润滑,减低运动表面间的摩擦和磨损。当剪切作用停止后,它又能恢复一定的稠度,润滑脂的这种的流动性,决定它可以在不适于用润滑油的部位进行润滑。此外,由于它是半固体状物质,其密封作用和保护作用都比润滑油好。
润滑脂适用范围:
这个分类标准适用于润滑各种设备、机械部件、车辆等所有种类的润滑脂,不适用于用途的润滑脂。也就是说,只对起润滑作用的润滑脂适用,对起密封、防护等作用的脂均不适用。这个分类标准是按操作条件进行分类的。在这个标准的分类体系中,一种润滑脂对应一个代号,这个代号与该润滑脂在应用中严格的操作条件(温度、水污染和负荷条件等)相对应。
润滑脂主要是由稠化剂、基础油、添加剂三部分组成。一般润滑脂中稠化剂含量约为10%-20%,基础油含量约为75%-90%,添加剂及填料的含量在5%以下。
润滑脂的耐热性:
润滑脂受热会引起其结构骨架纤维分子的排列变化。 皂基脂的稠化剂为相应的脂肪皂,有固态、液态和液晶态3 个相变状态,即相变化。 因此润滑脂也有相应的相变化。 金属皂基不同润滑脂的相转变点也不同, 锂皂的相转变点较高所以它的滴点较高。 钙基脂则因为含有部分作为结构稳定剂的水,而水会蒸发,皂基与基础油就容易分离钙基脂的结构被破坏, 因此它的滴点较低, 钙基脂不能在 70℃以上使用。 除烃基脂外,其他非皂基脂没有相转变,所以耐热。 但它们使用温度受基础油的热性影响。
润滑脂在使用或长期储存中会有少量的油析出,这种现象称为分油,分油的多少由胶体性所决定,是衡量润滑脂好坏的指标之一。润滑脂在机械部件中使用时,微量的分油是有利的,分出的油可起润滑作用。但如果润滑脂的胶体性差,则在受热、压力、离心力、时间等作用下易发生严重分油,导致寿命迅速降低,并使润滑脂变稠变干,失去润滑作用。
车用滑脂产品为汽车零部件行业专项定制。而且其不但能用于汽车车身及内部元件的润滑与降噪,同样也适用于家用电器零部件的润滑与降噪以及低温阻尼增强手感的场合。分油率极低这一特性对其在贮存方面也有明显的优势,久存不会因大量分油而导致质变。