分步直动式电磁阀
该阀采用一次开阀和二次开阀连在一体,主阀和导阀分步使电磁力和压差直接开启主阀口。当线圈通电时,产生电磁力使动铁芯
和静铁芯吸合,导阀口开启而导阀口设在主阀口上,且动铁芯与主阀芯连在一起,此时主阀上腔的压力通过导阀口卸荷,在压力差和电磁力的同时作用下使主阀芯向上运动,开启主阀介质流通。当线圈断电时电磁力消失,此时动铁芯在自重和弹簧力的作用下关闭导阀孔,此时介质在平衡孔中进入主阀芯上腔,使上腔压力升高,此时在弹簧复位和压力的作用下关闭主阀,介质断流。结构合理,动作可靠,在零压差时工作也可靠。如:ZQDF,ZS,2W等。
原理:它是一种直动和先导式相结合的原理,当与出口压差≤0.05Mpa,通电时,电磁力直接把先导小阀和主阀关闭件依次向上提起,阀门打开。当与出口压差0.05Mpa,通电时,电磁力先打开先导小阀,主阀下腔压力上升,上腔压力下降,从而利用压差把主阀向上推开;断电时,先导阀和主阀利用弹簧力或介质压力推动关闭件,向下移动,使阀门关闭。
特点:在零压差或真空、高压时亦能可靠工作,但功率较大,要求竖直安装。
电磁阀在选型时的注意事项
一:适用性
管路中的流体和选用的电磁阀系列型号中标定的介质一致。
流体的温度小于选用电磁阀的标定温度。
电磁阀允许液体粘度一般在20CST以下,大于20CST应。
工作压差,管路高压差在小于0.04MPa时应选用如ZS,2W,ZQDF,ZCM系列等直动式和分步直动式;低工作压差大于0.04MPa时可选用先导式(压差式)电磁阀;高工作压差应小于电磁阀的大标定压力;一般电磁阀都是单向工作,因此要注意是否有反压差,如有安装止回阀。
流体清洁度不高时应在电磁阀前安装过滤器,一般电磁阀对介质要求清洁度要好。
注意流量孔径和接管口径;电磁阀一般只有开关两位控制;条件允许请安装旁路管,便于维修;有水锤现象时要定制电磁阀的开闭时间调节。
注意环境温度对电磁阀的影响
电源电流和消耗功率应根据输出容量选取,电源电压一般允许±10%左右,注意交流起动时VA值较高。
二、可靠性
电磁阀分为常闭和常开二种;一般选用常闭型,通电打开,断电关闭;但在开启时间很长关闭时很短时要选用常开型了。
寿命试验,工厂一般属于型式试验项目,确切地说我国还没有电磁阀的标准,因此选用电磁阀厂家时慎重。
动作时间很短频率较高时一般选取直动式,大口径选用快速系列。
三、安全性
一般电磁阀不防水,在条件不允许时请选用防水型,工厂可以定做。 电磁阀的高标定公称压力一定要超过管路内的高压力,否则使用寿命会缩短或产生其它意外情况。
有腐蚀性液体的应选用全不锈钢型,强腐蚀性流体宜选用塑料王电磁阀。
爆炸性环境选用相应的防爆产品。
四、经济性
先应该依次遵循安全性,可靠性,适用性,经济性原则,其次是根据六个方面的现场工况(即管道参数、流体参数、压力参数、电气参数、动作方式、要求进行选择)。
纵观国内外电磁阀,到目前为止,从动作方式上可分为类即:直动式、反冲式、先导式,而从阀瓣结构和材料上的不同以及原理上的区别反冲式又可分为:膜片式反冲电磁阀、活塞式反冲电磁阀;先导式又可分为:先导式膜片电磁阀、先导式活塞电磁阀;从阀座及密封材料又可分为:软密封电磁阀、钢性密封电磁阀、半钢性密封电磁阀。
一、直动式电磁阀
原理:常闭型直动式电磁阀通电时,电磁线圈产生电磁吸力把阀芯提起,使关闭件离远开阀座密封副打开;断电时,电磁力消失,靠弹簧力把关闭元件压在阀座上阀门关闭。(常开型与此相反)。
特点:在真空、负压、零压差时能正常工作,DN50以下可任意安装,但电磁头体积较大。如我公司引进HERION公司技术生产的直动电磁阀可用于1.33×10-4 Mpa真空。
二、反冲型电磁阀
原理:它的原理是一种直动和先导相结合,通电时,电磁阀先将辅阀打开,主阀下腔压力大于上腔压力而利用压差及电磁阀的同时作用把阀门开启;断电时,辅阀利用弹簧力或介质压力推动关闭件,向下移动便阀门关闭。
特点:在零压差或高压时也能可靠工作,但功率及体积较大,要求竖直安装。
三、先导式电磁阀
原理:通电时,电磁力驱动先导阀打开先导阀,主阀上腔压力迅速下降,在主阀上下腔内形成压差,依靠介质压力推动主阀关闭件上移,阀门开启;断电时,弹簧力把先导阀关闭,介质压力通过先导孔迅速进入主阀上腔在上腔内形成压差,从而使主阀关闭。
特点:体积小,功率低,但介质压差范围受限,满足压差条件。
两位三通电磁阀通常与单作用气动执行机构配套使用,两位是两个位置可控:开-关,三通是有三个通道通气,一般情况下1个通道与气源连接,另外两个通道1个与执行机构的进气口连接,1个与执行机构排气口连接,具体的工作原理可以参照单作用气动执行机构的工作原理图。
两位五通电磁阀通常与双作用气动执行机构配套使用,两位是两个位置可控:开-关,五通是有五个通道通气,其中1个与气源连接,两个与双作用气缸的外部气室的进口连接,两个与内部气室的进口接连,具体的工作原理可参照双作用气动执行机构工作原理。
在气路(或液路)上来说,两位三通电磁阀具有1个进气孔(接进气气源)、1个孔(提供给目标设备气源)、1个排气孔(一般安装一个,如果不怕噪音的话也可以不装@_@)。
两位五通电磁阀具有1个进气孔(接进气气源)、1个正动作孔和1个作孔(分别提供给目标设备的一正一作的气源)、1个正动作排气孔和1个作排气孔(安装)。
对于小型自动控制设备,气管一般选用8~12mm的工业胶气管。在电气上来说,两位三通电磁阀一般为单电控(即单线圈),两位五通电磁阀一般为双电控(即双线圈)。线圈电压等级一般采用DC24V、AC220V等。两位三通电磁阀分为常闭型和常开型两种,常闭型指线圈没通电时气路是断的,常开型指线圈没通电时气路是通的。
常闭型两位三通电磁阀动作原理:给线圈通电,气路接通,线圈一旦断电,气路就会断开,这相当于“点动”。常开型两位三通单电控电磁阀动作原理:给线圈通电,气路断开,线圈一旦断电,气路就会接通,这也是“点动”。
两位五通双电控电磁阀动作原理:给正动作线圈通电,则正动作气路接通(正动作孔有气),即使给正动作线圈断电后正动作气路仍然是接通的,将会一直维持到给作线圈通电为止。给作线圈通电,则作气路接通(作孔有气),即使给作线圈断电后作气路仍然是接通的,将会一直维持到给正动作线圈通电为止。这相当于“自锁”。基于两位五通双电控电磁阀的这种特性,在设计机电控制回路或编制PLC程序的时候,可以让电磁阀线圈动作1~2秒就可以了,这样可以保护电磁阀线圈不容易损坏。
电磁阀在液路系统中用来实现液路的通断或液流方向的改变,它一般具有一个可以在线圈电磁力驱动下滑动的阀芯,阀芯在不同的位置时,电磁阀的通路也就不同。阀芯的工作位置有几个,该电磁阀就叫几位电磁阀:阀体上的接口,也就是电磁阀的通路数,有几个通路口,该电磁阀就叫几通电磁阀。电磁阀安装后,一般所有接口都应该是连接好了的,所谓工作位置指的是阀芯的位置。阀芯在线圈不通电时处在甲位置,在线圈通电时处在乙位置,阀芯在不同位置时,对各接口起到或接通或封闭的作用。
电磁阀二位是指电磁阀的阀芯有两个不同的工作位置(开、关)。
电磁阀二通、三通指电磁阀的阀体上有两个、三个通道口;
比如二位二通电磁阀是一进一出(二个通道、普通常见)二位三通电磁阀控制液体是一进二出(两出分别是一个常开一个常闭);气动换向电磁阀是一进一出一排气;液压一进一出一回油。
电磁阀工作原理:
电磁阀里有密闭的腔,在不同位置开有通孔,每个孔连接不同的油管,腔中间是活塞,两面是两块电磁铁,哪面的磁铁线圈通电阀体就会被吸引到哪边,通过控制阀体的移动来开启或关闭不同的排油孔,而进油孔是常开的,液压油就会进入不同的排油管,然后通过油的压力来推动油缸的活塞,活塞又带动活塞杆,活塞杆带动机械装置。这样通过控制电磁铁的电流通断就控制了机械运动。
当智能比例阀无法启动或无法停止时,这可能会影响系统的正常运行和控制效果。下面将介绍一些常见的处理方法,帮助用户解决这种情况。
,检查电源供应和电气连接。确保智能比例阀的电源供应正常,并检查电气连接是否良好。检查电源线是否插紧,确认电气连接没有松动或腐蚀等问题。有时候,电源故障或电气连接问题可能导致阀门无法启动或停止。
其次,检查控制信号的输入和设置。智能比例阀通常通过控制信号来启动和停止。用户应检查控制信号的输入是否正常,并确保信号设置正确。检查控制信号的电压、电流和信号类型是否符合阀门的要求。还要确认控制信号的范围和精度是否正确设置。
另外,检查阀门本身的机械部件。智能比例阀可能出现阀芯卡住或阀门内部部件损坏的情况。用户可以检查阀门的机械部件,如阀芯、阀杆、密封件等是否正常工作和完好无损。清洁阀门内部,移除任何可能导致阻塞或卡住的物质,并确保阀门能够自由移动。
此外,考虑阀门的工作环境和工作参数。智能比例阀的性能和工作稳定性可能会受到工作环境和工作参数的影响。用户应该评估阀门是否能够适应工作环境的温度、压力和介质等要求。如果工作条件超出阀门的额定范围,可能导致阀门无法启动或停止。在这种情况下,可能需要调整工作参数或更换适合的阀门。
后,建议参考阀门的技术手册、生产商的建议或咨询技术人员的意见。他们可以根据具体的应用需求和系统情况,提供针对性的建议和指导,帮助用户解决智能比例阀无法启动或无法停止的问题。
处理智能比例阀无法启动或无法停止的情况需要检查电源供应和电气连接、检查控制信号的输入和设置、检查阀门的机械部件,并考虑工作环境和工作参数。通过综合考虑这些因素,并参考技术人员的建议,用户可以找到合适的解决方案,使智能比例阀恢复正常的启动和停止功能。
高温气缸的工作效率与温度之间存在密切的关系。由于高温环境对气缸和其工作介质产生影响,温度变化可以对气缸的性能和工作效率产生显著影响。那么高温气缸的工作效率与温度有关从哪些方面可以看出呢?下面小编就来给大家简单的介绍一下,希望能够帮助到广大用户。
高温环境会导致气体的热膨胀,从而影响气缸的工作效率,在高温环境下,气体的分子热运动增强,分子之间的相互作用减弱,导致气体的体积膨胀。这将导致气缸在高温环境下产生较大的内部压力变化,影响气缸的推力和工作效率。
高温环境会影响气缸的摩擦特性,进而影响其工作效率,在高温环境下,气缸的润滑剂可能会失效或变稀,从而增加气缸内部部件之间的摩擦和能量损耗。这将导致气缸的效率降低,能量转化不完全,可能会产生额外的热量和功耗。
高温环境对气缸材料的性能和特性也会产生影响,进而影响工作效率。在高温环境下,气缸的材料可能会发生蠕变、热膨胀或氧化等现象,导致气缸的变形、损坏或老化。这将影响气缸的密封性能、运动平稳性和工作效率。
高温环境还可能影响气缸的冷却系统,进而影响工作效率。高温环境下,气缸的冷却系统需要承受更高的散热负荷,如果冷却系统不足以有效降低温度,可能会导致气缸过热,降低工作效率。