以来,全国大部分地表水源受污染,水体中藻类等有机物含量明显增多,常规混凝处理效果并不理想。絮凝强化时,对因池体自身结构缺陷等因素造成的混凝动力不足、水力条件不当等问题往往不够重视。
合理地选定和优化混凝工艺,不仅会提高出水水质,还能达到节能、节药及降低运行费用的目的。往复式隔板絮凝池是依靠水流在廊道间的往返流动,使颗粒碰撞聚集。实际运行资料表明,有些絮凝池在运行过程中絮凝效果不佳,致使后续工艺的出水水质远低于设计水平。国内外常用的方法是将CFD 模型应用到絮凝过程中,并已经证明CFD对絮凝模拟的实用有效性。通过絮凝动力学的研究,得到了絮凝中重要参数速度梯度值(G值)随时间的变化规律,并将CFD模型应用到往复式隔板絮凝池的设计过程中,通过流体力学软件FLUENT的数值模拟,得到了往复式隔板絮凝池内部水流的状态和内部的流场,并对模拟结果进行了深入的分析,定性分析水流状态对絮凝处理效果的影响。
为使水流中的颗粒相互碰撞,就使其与水流产生相对运动。水中的颗粒与水流产生相对运动好的办法是改变水流的速度。改变速度的方法有两种:①改变水流速度时造成的惯性效应来进行凝聚;②改变水流方向。在湍流中充满着大大小小的涡旋。其中大涡旋能够使流体进一步的掺混,使颗粒均匀扩散于流体中;同时创造大量的小漩涡,并将能量输出给小涡旋。而小涡旋的作用是促进颗粒的碰撞,提高絮凝效率。微涡旋理论认为:水中微涡旋尺度与矾花颗粒尺度相近时混凝反应充分。而小涡旋的动力学致因是惯性效应,特别是湍流涡旋的离心惯性效应,由此可见湍流中微小涡旋的离心惯性效应是絮凝的重要动力学致因。
好的絮凝效果不仅需要大量的颗粒碰撞,还需要控制颗粒进行合理有效的碰撞,使颗粒聚集起来。速度梯度是絮凝过程中常用的控制动力学因素。根据絮凝动力学理论得知,絮凝过程中的速度梯度值是逐渐减小的;而且开始时刻的速度梯度值要求能与混合阶段衔接上,所以一般要求较大。这时的絮凝也要求接触和碰撞,但是由微涡旋理论可知要求的水力半径要适合于自身的直径,才能发生有效碰撞。理论上,搅拌强度越大,速度梯度越大,相互接触碰撞的机会越多。但搅拌强度大(G值大),水流的剪切力就大,松散的絮体受到水流剪切会二次断开成为小絮体。因此要求搅拌的强度(也就是速度梯度)随着絮凝的进行而逐渐变小。整个混凝的过程中,G值是递减的。但是速度梯度递减规律,国内外的还没有定论。
圆弧形渠道能够减小渠道转弯处的速度,减少能耗。而且,圆弧形渠道能够产生很多复杂的涡旋结构,提高絮凝效率。通过两个方案中转弯处X 方向速度的对比证明,圆弧形拐弯往复式絮凝器的速度梯度变化规律更加合理,混凝效果更好。
传统往复式絮凝池在矩形渠道拐弯处速度方向改变为180°直接转变,而圆弧形渠道拐弯处的速度方向则是逐渐变化,变化比矩形拐弯渠道平缓的多。而其圆弧形拐弯渠道能够产生惯性离心力,进而产生各种微涡旋,根据王绍文教授提出的“惯性效应是絮凝的动力学致因”可知,圆弧形渠道能够提高絮凝效率,即絮凝效率较高