高分辨率与辨认速度的矛盾
从模仿相机到高清相机,也会引发图像的高分辨率与辨认速度相矛盾的问题。高清的优势显而易见,但是任何事情都是两面的,在车牌识别中车牌辨认时主要表现为:高清图片由于图片掩盖面广,可能会同时在图片中呈现多个车牌的辨认。这就对车牌辨认的速度请求很高,车牌辨认系统关于高清视频流码流过大,还会因对辨认系统资源占用需求过大而剖析起来会呈现处置速渡过慢的问题,这可能招致呈现漏车现象,而难以完成对车辆抓拍率和车牌辨认率的提升。
车牌辨认系统的顺应性急需增强
目前我国的车牌辨认产品都请求所辨认的车牌大小固定,而对过大和过小的车牌普通都不能辨认。这样就形成对视频触发的状况下局部车牌无法被辨认的问题。此外,在有些现场环境中,由于受外界条件的影响,无法将相机架设在位置,会形成图片中车牌不同水平的偏移。
车牌识别系统(VehicleLicensePlateRecognion,VLPR)是指能够检测到受监控路面的车辆并自动提取车辆牌照信息(含汉字字符、英文字母、阿拉伯数字及号牌颜色)进行处理的技术。车牌识别是现代智能交通系统中的重要组成部分之一,应用十分广泛。它以数字图像处理、模式识别、计算机视觉等技术为基础,对摄像机所拍摄的车辆图像或者视频序列进行分析,得到每一辆汽车的车牌号码,从而完成识别过程。通过一些后续处理手段可以实现停车场收费管理,交通流量控制指标测量,车辆定位,汽车防盗,高速公路超速自动化监管、闯红灯电子、公路收费站等等功能。对于维护交通安全和城市治安,防止交通堵塞,实现交通自动化管理有着现实的意义。
2、预处理
由于图像质量容易受光照、天气、相机位置等因素的影响,所以在识别车牌之前需要先对相机和图像做一些预处理,以得到车牌清晰的图像。一般会根据对现场环境和已经拍摄到的图像的分析得出结论,实现相机的自动曝光处理、自动白平衡处理、自动逆光处理、自动过爆处理等,并对图像进行噪声过滤、对比度增强、图像缩放等处理。去噪方法有均值滤波、中值滤波和高斯滤波等;增强对比度的方法有对比度线性拉伸、直方图均衡和同态滤波器等;图像缩放的主要方法有近邻插值法、双线性插值法和立方卷积插值等。
随着行业的发展,市场各式各样的需求,市场对车牌识别系统(车牌识别系统)的需求越来越广泛,主要分为:软件识别和硬件识别。通过车牌号码的自动识别、自动登陆、自动对比,系统可以实现自动开闸、自动计费、自动验证用户车辆身份、自动区分内外部车辆、自动计算车位数、自动报警等诸多智能化功能。
随着现在我国的经济不断快速进行发展,汽车的拥有数量也是在逐年进行增多的,从但是当车辆逐渐多了之后,我们对于外来车辆进行相应的排查以及分类也就变得非常的复杂了,所以,现在已经有很多的小区都开始安装有车牌识别功能的系统,用来区别小区内外的车辆来结合相应的收费系统,对那些停留长时间的车辆比较合理的进行收费。