活性炭在适当的条件下经过强氧化剂处理,可以提高其表面酸性基团的相对含量,增加表面极性,从而增强其对极性化合物的吸附能力。常用的氧化剂有 HNO₃、H2O2等。实验研究,通过对活性炭进行强氧化表面处理后,对11种不同气体和蒸汽进行吸附,结果表明,改性活性炭对苯、乙胺等的吸附容量大大降低,主要是因为活性炭表面经过强氧化后缺失了大量的微孔;而对氨水和水的吸附能力却大大增强,这主要是因为活性炭表面氧化物的增加。因此,随着活性炭表面氧化物的增加,其对极性分子的化学吸附也增强。
通过还原剂对活性炭进行表面还原处理,可以提高活性炭表面碱性基团的相对含量,增加表面的非极性,提高活性炭对非极性物质的吸附能力。常用的还原剂有 H2、N2、NaOH等。表面还原后的活性炭,在对染料处理时表现出不一样的特性。对于阴离子染料,活性炭表面碱度和吸附效果间有着密切的联系,吸附机理是活性炭表面无氧Lewis碱位与被吸附染料的自由电子的交互作用。而对于阳离子染料,活性炭表面的含氧官能团起到了积极的作用,可是经过热处理的活性炭依然对阳离子染料有良好的吸附效果,这说明静电吸附和色散吸附是两种相当的吸附机制
通过液相沉积的方法可以在活性炭表面引入特定的杂原子和化合物,利用这些物质与吸附质之间的结合作用,增加活性炭的吸附能力。在液相沉积时,浸渍剂的种类是影响活性炭吸附效果的主要因素。针对不同的吸附质,可以采用不同的浸溃剂对活性炭进行处理,以得到良好的吸附效果。
值得注意的是,在对活性炭进行表面官能团的改性时,也伴随着活性炭表面化学性质的变化。其表面积、孔容积以及孔径分布都会有一定的变化,这也会影响活性炭的吸附。所以,在进行表面官能团的改性时,针对不同的吸附条件和吸附质采取不同的改性,要综合考虑物理结构和化学结构双重变化引起的影响[33.34]。
吸附质
活性炭的吸附效果跟吸附质本身的性质有着很大的关联性。通常,在不考虑活性炭自身孔径结构对大分子的“筛滤”作用时,由于大分子物质吸附能较高,所以大分子物质更易被吸附。对于水体中的小分子有机物,分子量大的更易被活性炭吸附。
对于挥发性有机化合物,分子量越大,其去除率就越高,而可提取有机物则恰恰相反,其吸附效果是随着分子量的减小而增强。这是由于挥发性有机化合物的极性较小,而可提取的有机化合物的极性比较大,由于活性炭本身的性质,可以将其看做一个非极性吸附剂,所以更易吸附水中的非极性物质而不易
活性炭吸附作用力是指吸附剂与吸附质来间在棉量方面的相互作用,承相这种相互作用的是电子,在发生吸附时,随翁巢附刑表面和吸附质分子中性质的不同,其相互作用的组合状况也不同。相互作用分为5案,作敦分散力相互作用,偶极子榻互作用、氢键,修电吸引力有其价健。
指致分散力伦敦(1ondonF)发现的力,是5种相互作用力中弱的,伯救方普遍存在于原子和分子网,包括惰性似子、分子网也都存在,在活性炭吸附中也是非常重要的吸附作用力,由于其与在可见光和紫外光领域中的光分散有关,所以称之为分散力。
除了伦敦分散力之外,偶极子相互作用也是一个相当微弱的相互作用力。表面上电负性不同的原子化学结合在一起时,由于电角性的差异导致对电子吸引强弱的不同产生电子的偏移,电子向电负性较大的一边集中分布。于是在相互结合的原子之间产生称作偶极矩的极矩p=gr,在有这种偶极子的表面原子组或者有极性的表面官能团与具有偶极子的分子之间,引发力的作用。这种力就叫做偶极子的相互作用,
氯键的强度一般为范德华力的5~10倍,其产生于一个氮原子与两个以上的其他原子结合的过程中,通常,固体表面上多多少少存在一些类似于羧基,氨基,羟精等含有氢原子的极性官能团,这些官能团中的氮原子易与吸附分子申电负性大的氧,硫,氮等非其价电子对形成直线形的氮键。同样,表面官能团中的氧,氮、氟等原子中非其价电子对的存在,使其易与吸附分子的极性官能团的氯原子形成无键。
静电引力是很强的相互作用。目前对于产生电位的机理还不是太清楚,但即使固体,液体等是绝,接触时表面仍会产生静电,电量少却能形成很强的电场。因此,这种老面经常带电的结果就使在发生吸附时产生了静电引力。
表面能够发生氧化、还原、分解等反应的吸附剂,容易与吸附质之间形成具价链,可产生非常强有力的吸附作用。
活性发涌过氧化,还原等手段进行处理,改变其表面官能团的性质。比表面积的大小以及孔径,但是由于置换基的种类以及浓度能够改变表面的化学性质及物理性质,所以能够从多种常剂、溶质所组成的溶液中有选择性地吸附某种南质的表面),
活性炭比表面积吸附现象发生在固体的表面,物体吸附能力的强弱很大程度上取决于比表面积的大小。有很多分析方法可以用来测定比表面积,其中常用的是BET法。此外还有流通法、液相吸附法、润湿热法。除此之外,通过置射线小角散射也能测定比表面积,但是BET法还是在测定活性炭比表面积方法中常用的。应用此法测定的活性炭的比表面积一般为1000m2/g。
活性炭的分类
根据制造方法、外观形状、用途功能以及孔经大小的不同,可以将活性炭分为不同种类。从形态来看,可以分为颗粒活性炭和粉状活性炭,而颗粒活性酸叉可分为无定形和定形两大类;依据原料的不同,可以将活性炭分为焦木质、石油、煤质和树脂活性炭;根据使用功能的不同又可以分为液体吸附、催化性能、气体吸附活性炭;从制造方法来划分,又分为物理法、化学法和物理化学生活性炭。
从外观形状上分类。
活性炭基本上是非结晶性碳,它由微细的石墨状微晶和将它们连接在一起的碳氢化合物部分组成。活性炭初的原料如木材、煤等,经炭化、活化等过程后,活性炭中部分碳原子之间已形成了微晶碳(活性炭的基本结晶),但是其面网结构却没有采取石墨那样规则性的积层结构,而是形成图1-1(b)那样的乱层结构。除微晶碳外,活性炭前驱体经炭化、活化等过程后仍然有部分未晶化的碳,活性炭被认为是由微晶群和其他未组成平行层的单个网状平面以及无规则碳组成的多相物质。
目前,在X射线衍射分析的基础上,已发现活性炭的微晶碳有两种不同的结构,一种是类石墨结构的微晶碳,其大小随炭化温度而变化,大小约由三个平行的石墨层所组成,其宽度约为一个碳六角形的九倍,它与石墨相比,微晶碳中平面面网之间排列不整齐,称为“乱层结构”,与石墨结构的比较如图1-1所示;另外一种微晶碳是由于石墨网结构之间的轴向不同,面网之间的间距也不整齐,或石墨层间扭曲,可能因杂原子(如氧、氮等)的进入而稳定,碳六面网被空间交联而形成无序的结构。Riley认为,在大部分碳材料中(包括活性炭)均含有这两种结构类型,而活性炭的终特性则取决于它是以哪种类型的结构为主。
富兰克林把除金刚石以外的碳素物质分为容易石墨化的易石墨化碳素和难
制备活性炭物理法通常指气体活化法,是以水蒸气、烟道气(水蒸气、CO2、N₂等的混合气)、CO:或空气等作为活化气体,在800~1000℃的高温下与已经过炭化的原材料接触进行活化的过程。在这个过程中,具有氧化性的活化气体在高温下侵蚀炭化料的表面,使炭化料中原有闭塞的孔隙重新开放并进一步扩大,某些结构因选择性氧化而产生新的孔隙,同时焦油和未炭化物等也被除去,终得到活性炭产品。由于物理法通常采用气体作为活化剂,工艺流程相对简单,产生的废气以CO2和水蒸气为主,对环境污染小,而且终得到的活性炭产品比表面积高,孔隙结构发达,应用范围广,因此在活性炭生产厂家中70%以上都采用物理法生产活性炭。下面对物理活化法的机理、工艺流程、装置设备及国内外发展现状等进行具体阐述。
原料炭化
物理法制备活性炭需要先将原料在400~600℃下进行炭化处理,使原料中碳元素以外的主要元素(氢、氧等)以气体形式脱除,通过CO:、CO 的形式也可使一部分碳元素释放出去,残留的碳元素则多数以类似石墨的碳微晶形态存在。然而和石墨晶体不同的是,这些碳微晶的排列是杂乱无章的,因此形成了具有活性炭原始形态的结构。但是仅仅经过炭化处理,碳微晶的周围以及碳微晶之间的缝隙仍被热解所产生的焦油或者无定形碳堵塞,因此需要进一步活化处理,除去这些堵塞孔隙的物质才能得到具有发达孔隙结构的活性炭。
在活性炭的实际生产过程中常使用的活化气体是以CO2、HO和O,为主要成分的烟道气。H:O与碳的吸热反应可有效防止碳与O:反应时温度急膜升高而产生局部过热的现象,反过来碳与0:的反应又可以维持活化温度,因此只要混合气体里各成分比例合适,便可以有效地稳定活化温度,使活化反应均匀进行。此外也有观点认为原料中含有不同的活化位点,这些活化位点对于不同的活化气体的反应活性也不一样,有的更易与水蒸气反应,有的更易与 CO:反应,因此采用混合气体更有利于制备活性炭。但值得注意的是有研究表明原料中若钾含量较高则会在含氧的混合气体中发生剧烈的燃烧反应而不是活化,这是因为包括钾在内的一些金属化合物对于气体活化有催化加速作用。、超临界活
超临界水是指气压和温度达到一定值时,因高温而膨胀的水的密度和因高压而被压缩的水蒸气的密度正好相同时的水。此时液态水和气态水没有区别,完全交融在一起,成为一种新的呈现高压高温状态的液体。超临界水具有很强的反应活性和广泛的融合能力。西班牙学者Salvador等用超临界状态水(T。374℃,p.=22.1MPa)取代水蒸气对木炭、煤、果壳等原料进行了活化处理,发现超临界水的活化效果优于水蒸气,例如反应速率提升,活化更均匀[4)。然而超临界水与碳反应的动力学、反应选择性及造孔机理等到目前为止均未有深入的研究,蔡琼等以酚醛树脂为原料,对比了超临界水和水蒸气活化效果,实验结果表明超临界水活化利于中孔的大量形成,而水蒸气则利于微