景德镇市京航活性炭有限公司面向眉山地区用户推荐废气处理活性炭。
吸附法又可分成三种:
1). 直接吸附法,利用活性炭对有机废气进行吸附净化处理,净化率可达95%以上,该方法设备简单、投资少,但需要经常更换活性炭,频繁的装卸、更换等程序增加运行费用。
2). 吸附-回收法。利用纤维活性炭吸附有机废气,使其在趋近饱和状态下过热蒸汽反吹,实现脱附再生。
3). 新型吸附-催化燃烧法。该方法综合吸附法与催化燃烧方法的优点,具有运行稳定、投资少、运行成本少、维修简单等优点。其利用新型吸附材料对有机废气进行吸附处理,使其在接近饱和状态下在热空气的作用下吸附、解析、脱附,接着再将废气引入催化燃烧床进行无焰燃烧处理,实现废气的净化处理。该方法适用于浓度低、风力大的废气净化处理中,是当前国内应用较多的一种废气净化处理办法。
活性炭吸附法
该方法原理是利用活性炭内部孔隙结构发达,有比表面积原理来吸附通过活性炭池的烟气颗粒及分子,活性炭结构如图1。
沥青混合料常见活性炭净化方案如下
沥青烟气首入废气洗涤塔,在废气洗涤塔内沥青烟气中所含的焦油转移到液相(吸收剂),从而达到净化废气的目的。沥青烟气中的焦油细雾粒被水吸附后,基本不溶于水,也不会发生反应产生大量新的化合物,只是形成浮油漂浮在水面。通过洗涤塔的补水阀补充新水,漂浮的焦油就会顺着洗涤塔的溢流口流出,对其收集再做其他处理。经过废气洗涤塔处理后,废气进入活性炭过滤棉进行吸附,较大粒径的污染物被吸附,然后进入到活性炭颗粒吸附层。由于活性炭固体表面上存在未平衡和未饱和的分子引力或化学健力,因此当此固体表面与气体接触时,就能吸引气体分子,使其浓聚并保持在固体表面,污染物质及气味从而被吸附。废气经活性炭吸附塔后,净化气体通过风机的作用高空达标排放。
活性炭吸附法安全性高,通常净化效率可达70%~80%,但随活性碳逐渐饱和而迅速下降,需定期更换活性炭,产生二次固废,运行维护成本很高。
活性碳吸附废气处理: 它对200mg/m³浓度以下的废气处理效果明显,处理成本低。但是对高浓度的处理由于要经常更换活性炭,耗材使用及饱和后的活性炭危废处置费用都非常高。缺点:吸附量小,物理吸附存在吸附饱和问题,随着吸附剂的消耗,吸附能力也变弱,使用一段时间后可能会出现吸附量小或失去吸附功能;
吸附时,存在吸附的专一性问题,对混合气体,可能吸附性会减弱,同时也存在分子直径与活性炭孔径不匹配,造成脱附现象;
光氧催化废气处理设备:投入成本及运行成本也比较低,但是对废气300-500mg/m³以上的浓度的废气治理不是太,需要和其它废气处理工艺结合使用。特别是对喷漆行业,由于含有大量漆雾会粘附在灯管上,大大降低光氧设备的处理效率,其前面要有水帘柜或喷淋塔先处理掉漆雾。
催化燃烧工艺(RCO):是近几年年内发展起来的新技术,净化率高,适应性强,能耗在燃烧法中低,适用于石油、化工、橡胶、油漆,涂料、制鞋粘胶、塑胶制品、印铁制罐、印刷油墨、电缆及漆包线等生产线的废气处理,尤其适用于需要热能回收的企业或烘干线废气处理,可将能源回收用于烘干线,从而达到节约能源的目的。
可处理的有机物质种类=。催化剂价格较贵,且要求废气中不得含有会导致催化剂失活的成分。催化燃烧工艺虽然目前来看处理效果高但是它的投入成本特别高
活性炭吸附塔的工作原理:
因为活性炭表面上存在着未平衡和未饱和的分子引力或化学健力,因此活性炭与气体接触时,就能吸引有机废气分子,使其浓聚并保持在活性炭表面,有机废气分子从而被吸附,有机废气经过滤后,实现达标排放,经过活性炭吸附浓缩后的高浓度废气,进入催化燃烧系统,进行脱附,实现循环使用(单单只靠活性炭吸附塔,是达不到排放标准的)
某工厂工程案例实景
活性炭吸附塔的优化与建议:
活性炭吸附塔在使用过程,因为炭的吸收会出现饱和状态,饱和状态下的炭,就不会再吸收有机废气,那么势必会产生固废;活性炭吸附塔在处理废气时,要通过当前的环境保护条例,就与其他工艺相互结合、搭配;当活性炭吸附塔与催化燃烧设备相互搭配下,能够将饱和状态的活性炭进行脱附,达到循环使用,减少固废产生。
某工厂工程案例实景
活性炭吸附塔的应用范围:
广泛用于喷涂、食品加工、印刷电路板、半导体制造、化工、电子、制皮业、乳胶制皮业、造纸、家具厂等行业均可使用。
进一步加强活性炭使用过程管理,确保活性炭在废气净化过程中切实发挥作用。
一方面,建议对活性炭使用实施等级管理。根据活性炭碘值、灰分等要素,建议相关部门对活性炭划定明确的等级标准,为今后依法监管提供更加便利的基础条件。在此基础上,要根据污染物类别、废气处理工艺和设施类型以及进风口污染物浓度、风量、风速等,在环境影响评价报告书或废气处理设施建设改造方案中,明确活性炭使用的低等级标准。根据活性炭碘值高低,测算废气处理设施开启时长,限定废气处理设施中活性炭的更换周期。对于劣质活性炭,要通过科学测算,确定相对较短的更换周期,保障污染物去除率。
另一方面,建议对活性炭执法检查开展试点。当前碘值检测相对复杂,而且费用相对较高,不利于环境执法现场抽样检测。对此,笔者建议研究更为便捷的活性炭碘值检测现场执法设备与执法规范,确保在短时间内定量分析出活性炭的类别。对于活性炭更换问题,在检查更换记录的同时,查看企业购买活性炭的发票,因此企业要加强台账资料管理,以备检查。同时,活性炭吸附箱的进风口和出风口要配备压力表,根据箱内风力压差初步判定活性炭吸附饱和情况。为了推动活性炭规范化使用,建议选择经济相对发达、产业种类较为的地区,授权开展活性炭规范化使用专项执法检查试点,严防因为活性炭品质差、更换不及时,造成废气处理设施实际运行效率低下等现象。
活性炭吸附脱附催化燃烧设备特点
1、采用催化燃烧工艺净化有机废气,可同时去除多种有机污染物,具有工艺流程简单、设备紧凑、运行可靠等优点;
2、采用电加热/燃油(气)加热启动,具有方便、运行费用低的优点;
3、工艺具有多重保护措施,确保系统的运行;
4、整个过程无废水产生,净化过程不产生二次污染;
5、具有净化,一般均可达97%以上;
6、本工艺和设备可广泛用于各行业中产生的高浓度有机废气的净化处理,可处理的有机物质种类包括苯类、酮类、酯类、醇类、醛类、醚类和烷烃类等。
活性炭吸附装置
1、废气的预处理
(一)污染物浓度要求
除溶剂和油气储运销装置的有机废气吸附回收外,进入吸附装置的有机废气中有机物的浓度应低于其爆炸极限下限的25%。当废气中有机物的浓度其爆炸极限下限的25%时,应使其降低到其爆炸极限下限的25%后方可进行吸附净化。
对于含有混合有机化合物的废气,其控制浓度P应低于易爆炸组分或混合气体爆炸极限下限值的25%,即P>min(Pe ,Pm)×25%,Pe为易爆组分爆炸极限下限值(%),Pm为混合气体爆炸极限下限值,Pm按照下式进行计算:
Pm=(P1+P2+…+Pn)/(V1/P1+V2/P2+…+Vn/Pn)
式中:
Pm ——混合气体爆炸极限下限值,%
P1,P2,…,Pn ——混合有机废气中各组分的爆炸极限下限值,%
V1,V2,…,Vn ——混合有机废气中各组分所占的体积百分数,%
n ——混合有机废气中所含有机化合物的种数。
(二)气体温度要求
进入吸附装置的废气温度宜低于40℃。
(三)废气湿度对活性炭吸附性能的影响
1、由于活性炭表面通常含有大量的含氧基团,一般活性炭均具有较强的吸水能力,与有机物产生竞争吸附作用。
2、活性炭中含有灰分(金属氧化物),提高了其吸水能力。
如何提高活性炭的疏水性能
(1)原材料的影响:如煤种的影响、沥青基球型活性炭具有较好的疏水能力;
(2)高碘值活性炭(挥发份低)的疏水能力通常要优于低碘值的活性炭;
(3)对活性炭进行表面疏水改性,去除或减少表面含氧基团、降低灰分(金属氧化物)。
(四)颗粒物的含量要求
进入吸附装置的颗粒物含量宜低于1mg/m3。
粉尘:细颗粒物(化工、家具等)
漆雾颗粒物(形成气溶胶):影响大
絮状颗粒物:印刷、橡胶、化纤等生产过程产生
(五)废气成分的影响
1、活性炭的“中毒”(或劣化):
高沸点(或“半挥发性”)物质再生困难,在活性炭上聚集,如硅烷、油脂等化合物,需要通过冷凝、过滤、吸附等预处理首行去除;
发生聚合反应,造成在活性炭上聚集
附反应形成单质硫的聚集。
在吸附气体中即使含有微量的高分子物质或聚合性物质,在活性炭中聚集,也会很快引起活性炭吸附性能急剧下降。
活性炭对废气吸附的特点:
(1)、对于芳香族化合物的吸附优于对非芳香族化合物的吸附。
(2)、对带有支键的烃类物理优于对直链烃类物质的吸附。
(3)、对有机物中含有无机基团物质的吸附总是低于不含无机基团物质的吸附。
(4)、对分子量大和沸点高的化合物的吸附总是分子量小和沸点低的化合物的吸附。
(5)、吸附质浓度越高,吸附量也越高。
(6)、吸附剂内表面积越大。吸附量越高。