产品选用椰子壳为原料,外观为不定型破碎炭、无味,比表面积大、机械强度高、粒度均匀稳定、杂质含量低,广泛应用于高纯度气体、液体、石化行业中作为催化剂载体使用,也可以用于石化行业中脱硫、脱臭处理等。
产品采用果壳为原料,空隙结构合理,广泛用于有毒气体的净化,废气处理,漆雾吸附等。对于化工、石化、炼焦、环保等行业的气体处理及对SO2、氯苯、辛烷、乙胺、二甲基苯、环已烷、甲醚、嗅化氢、二氧化硫、二硫化硒碳、氯乙烯、甲醇、丙酮、氧化氮等工业有害气体的净化处理。
防火活性炭在储存或运输时,防止与火源直接接触,以防着火、活性炭再生时避免进氧并再生,再生后用蒸汽冷却降至80℃以下,否则温度高,遇氧,活性炭自燃。
1、果壳活性炭在运输过程中,防止与坚硬物质混状,不可踩、踏,以防炭粒破碎,影响质量。
2、储存应储存于多孔型吸附剂,所以在运输储存和使用过程中,都要防止水浸,因水浸后,大量水充满活性空隙,使其失去作用。
3、果壳活性炭防止焦油类物质在使用过程中,应禁止焦油类物质带入活性炭床,以免堵塞活性炭空隙,使其失去吸附作用。好有除焦设备净化气体 [1]。
铬是电镀中用量较大的一种金属原料,在废水中六价铬随pH值的不同分别以不同的形式存在。活性炭有非常发达的微孔结构和较高的比表面积,具有的物理吸附能力,能有效地吸附废水中的Cr(Ⅵ)。活性炭的表面存在大量的含氧基团如羟基(-OH)、羧基(-COOH)等,它们都有静电吸附功能,对Cr(Ⅵ)产生化学吸附作用。完全可以用于处理电镀废水中的Cr(Ⅵ),吸附后的废水可达到国家排放标准。试验表明:溶液中Cr(Ⅵ)质量浓度为50mg/L,pH=3,吸附时间1.5h时,活性炭的吸附性能和Cr(Ⅵ)的去除率均达到佳效果。因此,利用活性炭处理含铬废水的过程是活性炭对溶液中Cr(Ⅵ)的物理吸附、化学吸附、化学还原等综合作用的结果。活性炭处理含铬废水,吸附性能稳定,处理,操作费用低,有一定的社会效益和经济效益。
果壳活性炭用于水净化及污水处理,微过滤是一种精密过滤技术。它的孔径范围一般为0.05~I0//m,介于常规过滤和超滤之间,是属于以压力为驱动力达到分脔和浓缩的目的,无相态的变化和界面质量的转移,与常规过滤有所区别。常规过滤一般分深层过滤和筛网状过滤。它所用的介质,如纸、石棉、玻璃纤维、陶瓷、布、毡等,都是一些孔形极不憋齐的多孔体,孔径分布菹围较广,无法标明它的孔径大小,过滤时粒子是靠陷入介质内部曲折的通逍而被阻留.阻留率B6压力的増加而下降,介质厚,对颗粒的容纳撒大,用于一般澄淸过滤。
反渗透系统的水源一般为天然水,而天然水中的有机物含量复杂,研究认为,果壳活性炭对分子量在500~3000的有机物有很好的去处效果,对于分子量小于500和大于3000的有机物没有去除效果。上述果壳活性炭的吸附指标的分子量在200以下,而天然水中有机物主要包括腐植酸、富维酸等物质,其分子量远远大于200,故其吸附值不能代表对天然水中有机物的吸附能力。所以在选择以天然水作为果壳活性炭的进水时,其滤料的选择与果壳活性炭的吸附碘值的高低等参数没有多大关系,而与果壳活性炭的过渡孔(过渡孔半径一般在10~100nm)有多少有关,应选择过渡孔较高的活性炭,上述三种材质的果壳活性炭以核桃壳和杏壳的过渡孔多,应选择核桃壳或杏壳。
果壳净水活性炭选用杏壳、桃壳、核桃壳、枣壳等果壳为原料,经系列生产工艺精制而成,外观呈黑色颗粒状。果壳净水活性炭优点是孔隙结构发达,比表面积大,吸附性能强,库层阴力小,化学性能稳定,易再生。适用于高纯度的生活饮用水、工业用水和废水处理的深度净化脱氯、脱色、除臭和黄金提炼等方面。
果壳活性炭活性炭吸附
果壳活性炭活性炭吸附是指利用活性炭的固体表面对水中的一种或多种物质的吸附作用,以达到净化水质的目的。
果壳活性炭影响活性炭吸附的因素
吸附能力和吸附速度是衡量吸附过程的主要指标,吸附能力的大小事用吸附量来衡量的。而吸附速度是指单位重量吸附剂在单位时间内所吸附的无质量。在水处理中,吸附速度决定了污水需要和吸附剂接触时间。
特别适用于电厂、石化、炼油厂、印染纺织业、食品饮料、药用活性炭、电子高纯水、生活饮用水、工业中水回用等行业,能有效吸附水中的游离氯、酚、硫、油、胶质、农药残留物和其他有机污染物,余氯、半脱氯值,以及有机溶剂的回收等。