半导体激光测距机具有结构简单、体积小、重量轻、低成本、高重复频率、率等特点,在中、近程测距方面有明显优势,但是由于输出能量低而使得测程偏低,因此,提高测程是半导体激光测距系统急待解决的问题。提高半导体激光测距接收系统的性能是解决该问题的有效方法之一。
相位法测距是光电测距的主要方式之一,也是目前测距精度高,应用广泛的一种测距方法。相位法激光测距利用发射的调制光和被测目标反射的接收光之间光强的相位差包含的距离信息,来实现对被测目标距离的测量,由于采用调制和差频测相等技术,具有测量精度高的优点,广泛用于有合作目标的精密测距场合。
相位式激光测距多测尺原理
在各类型的长、中、短程测距仪中,为了实现远距离和的相位测量,可以使用测尺长度不同的几把光尺(类似于钟表的时分秒三个指针配合使用,测量时间的),在这组测尺中,短的测尺必要的测距精度,而较长的测尺用于相位测距的量程。目前,在相位式激光测距中,采用的测距技术选定方式有两种:分散的直接测尺频率方式和集中的间接测尺频率方式。
分散的直接测尺频率方式
在这种测距技术中,测尺频率和测尺长度直接相对应,即测尺长度可以直接由测尺频率来确定,而且各测尺频率之间比较分散,所以这种选择频率的方式称为分散的直接测尺频率方式。测尺频率fs与测尺长度Ls的关系为:。
在测相精度很高(一般为1‰左右)的情况下,为了必要的测距精度,精尺的频率选得很高,一般为十几MHz~几十MHz甚至几百MHz。目些国家正在研制的频激光测距仪调制频率高达500 MHz,在这样高的频率下直接对发射波和接收波进行相位测量,在技术上将遇到的困难。例如高频电路中的寄生参量的影响将产生显著的附加相移,降低测相精度。另外,因为鉴相器的读数和频率有直接关系,若对不同的测尺频率直接测相,就有几套测相电路,使电路结构复杂化,也不经济。因此,目前相位式测距仪都采用差频来测相
自动增益控制原理
从发射到接收过程中,经过目标物的漫反射以及衰减,由于受半导体激光器发射功率、收发距离远近等各种因素的影响,接收电路所接收的激光信号强弱变化范围很大。如果接收电路增益不变,则信号太强时会造成接收机的饱和或者阻塞,甚至使接收机损坏,而信号太弱时又有可能丢失。因此在信号接收放大模块中包含自动增益控制电路(AGC),以便对信号幅度的放大进行自动控制,在接受弱信号时,使接收电路有很高的增益,而在接收弱信号时,接收电路的增益应减小一些。这种要求靠人工增益控制来实现是困难的,采用自动增益控制电路,使接收电路的增益随着接收信号强弱而自动变化,使接收信号其满足混频器的要求。自动增益控制电路是接收电路中不可缺少的辅助电路
自动增益控制电路的作用是:当输入信号电压变化很大时,保持接收机输出电压恒定或基本不变。具体地说,当输入信号很弱时,接收机的增益大,自动增益控制电路不起作用;当输入信号很强时,自动增益控制电路进行控制,使接收机的增益减小。这样,当接收信号强度变化时,接收机的输出端的电压或功率基本不变或保持恒定。
探测灵敏度:灵敏度是用来描述探测器对光辐射的敏感程度,定义为光探测器的输出变化与入射光的单位光功率之比。在评价器件的灵敏度时,其输出、输入量均用有效值(即均方根值)表示,并说明辐射源的性质。灵敏度可以用符号或者表示,其中λ表示工作波长,T为辐射源的室温,f为调制频率。
量子效率:对光电探测器来说,吸收光子产生光电子,光电子形成光电流。在一定的入射光子数下产生的光电子越多效率越高。通常用量子效率ηq表示,其定义为单位时间内被光子激励产生的光电子数与同一时间内入射到探测器表面的光子数之比。显然,ηq越高越好。