技术以中国石油自主技术为主,将会替代进口POE、POP、乙丙橡胶等新材料。”江苏省环保集团在为项目编制的环评报告书中指出,该项目是中国石油实现“双碳三新”发展的重大举措,也是中国石油推动炼化业务绿色低碳转型的具体部署。
再看中国石化。公开信息显示,中石化(广东)材料研究院有限公司以“合成材料加工应用基础研究牵引产品整体解决方案”为定位目标,特别关注新能源、汽车轻量化材料等领域,支撑中国石化在相关合成材料产业取得先机。今年3月,中国石化成立北京化工研究院基础研究所,聚焦化工材料领域基础科学和优势领域基础研究,加快解决催化科学和高分子材料共性问题,助力化工新材料领域关键核心技术攻关。
中国海油于去年与壳牌合作投资521亿元签约惠州三期乙烯项目,项目将建成全球单套大的茂金属聚乙烯装置,减少中国市场对化工品的依赖。
“三桶油”之外,荣盛石化、恒力石化、东方盛虹、卫星石化等众多民营企业也纷纷加码化工新材料。比如,荣盛石化于今年初宣布将投资675亿元建设荣盛新材料(舟山)有限公司金塘新材料项目,发力国内紧缺的化工产品。
由于市场扩展快,节节攀升的市场需求使化工新材料产业具有较高的利润率,而相对于石油化工项目,化工新材料项目的装置投资规模要小得多,即进入的资金门槛低,因而大量企业争先恐后进入化工新材料基本产品领域,造成除少数产品外,大部分基本产品的生产集中度很低,企业相应的生产规模普遍较小,密集于低端市场,既难以形成规模 经济 ,又无法提高技术水平,也容易形成恶性竞争。由于许多企业纷纷准备进入,已经进入的企业准备扩大产能,以至于有机硅、环氧树脂等不少化工新材料产品已经存在短期内因盲目投资而出现产能过剩的危险。
(三)企业形成三个梯队的格局,各梯队之间差距较大
梯队,主要由为数不多的外资(包括台资)企业构成。其特点是,产业经验丰富、产业基础完整、装置普遍规模大、技术水平高、销售能力强、产品链较为匹配、战略清晰并运作规范,通常以较的基本产品和改性产品占据着高、中端市场,因而往往是市场,获得较为丰厚的利润。第二梯队,是以中国化工集团公司蓝星集团为代表的国有企业,也有少量中石化集团所属的中小型国有企业。其特点是,进入市场较早、积累起一定产业经验、产业基础完整、装置有一定规模、有较强的技术积累和人才储备、产品链较为完整、运作和管理规范但机制不灵活,多数产品进入中端市场,部分产品还处于低端,所获利润不够稳定,一些企业仍在一定程度上受到传统国有企业弊端的困扰。第三梯队,是数量众多的民营中小型化工企业。其基本特点是,产业基础较弱、装置规模不大、技术水平普遍不高、产品链不完整、经营灵活多变、对市场变化灵敏、行为短期化、进入市场快,少数规模较大、技术基础较强的企业处于基本产品低端市场,多数企业则分布于广泛的、分散的终端产品市场。这一梯队中一些企业投机性很强,利润高时快速进入市场,参与分享高额利润,利润低时立即退出;一些企业在地方政策保护下生存,利用资源或能源、忽视环保和质量、
经历了2008年一遇的金融危机的冲击后,2009年随着各国刺激经济政策渐显成效,世界经济逐渐企稳复苏。中国经济更是率先起步,在强大的刺激政策与存货调整周期的作用下,2009年中国宏观经济成功走出了自2008年3季度以来深度下滑的低谷,实现“V”反转,实体经济出现超预期反弹。2009年我国石化工业也迅速回暖,开工率回升,产量产值稳步增长,企业亏损额减少。据统计,2009年1-11月,我国化学工业累计产值35315.7亿元,相较去年同期的累计产值32872.3亿元,同比增长7.4%。截止至2009年11月,我国化学工业累计实现产品销售收入34588亿元,同比增长6.5%;资产总计为32486亿元,同比增长12.9%;利润总额为1718亿元,同比增长13.5%。企业数为31966家,亏损企业数为4984家,同比增长11.2%,亏损企业亏损额为340.47亿元,同比下降16%。从业人员年均人数为491.14万人,比上年同期增加了3%。化工行业增加值同比增长15.1%,增速同比加快4.4个百分点。主要产品中,烧碱产量1763万吨,增长6.8%。纯碱产量1837万吨,增长7.2%。化肥产量6051万吨,增长14.3%;其中,氮肥、磷肥、钾肥产量分别增长12.8%、18.4%和18.5%。农药产量204万吨,增长12%。橡胶轮胎外胎产量59734万条,增长15.6%。电石产量1374万吨,增长4.7%。
环保节能是现在逐渐流行起来的一个热门词汇,环保节能的理念也逐渐改变着人们的价值观。重视环保,节约能源,成为社会和在日常运行中的选择。特别是去年哥本哈根世界气候大会召开后,“低碳”、“环保”更是全球所重视。对于化工行业,由于是一个基础性的制造行业,在环保和节能方面需要做的工作量较大。目前,淘汰落后产能,产品结构升级,是我国整个化工行业的产业政策。我国化工行业的产品主要集中在中低端产品,随着相关政策的执行力度不断加强,对化工行业的影响是的。落后产能、落后工艺技术、落后企业的淘汰是化工行业发展的趋势。于此同时,新材料的发展也将是未来化工行业发展的重要议题。因为,新材料的生产过程可以是低碳的,其生产出来的新材料产品也可以是低碳的。
新材料(new material)是指新近发展或正在发展的具有性能的结构材料和有特殊性质的功能材料。结构材料主要是利用它们的强度、韧性、硬度、弹性等机械性能。如新型陶瓷材料,非晶态合金 (金属玻璃) 等。功能材料主要是利用其所具有的电、光、声、磁、热等功能和物理效应。世界上研究、发展的新材料主要有新金属材料,精细陶瓷和光纤等等。
倡导节能环保,用以节约现有能源消耗量,提倡环保型新能源开发,造福社会。要了解我们日常生活中能源耗费到底在哪里?污染在哪里?针对主要问题,应提高节能环保效率,减少不必要的能源浪费
“新兴信息产业”又称新一代信息技术产业,包括下一代通信网络、物联网、三网融合、新型平板显示、集成电路和软件。
生物产业
生物产业指以生命科学理论和生物技术为基础,结合信息学、系统科学、工程控制等理论和技术手段,通过对生物体及其细胞、亚细胞和分子的组分、结构、功能与作用机理开展研究并制造产品,或改造动物、植物、微生物等并使其具有所期望的品质特性。生物产业可以为社会提供商品和服务的行业的统称,包括生物医药(服务产业)、生物农业(资源产业)、生物能源、生物环保等,以及生物工业(生物制造产业),微生物工业为早的生物工业。
新能源
新能源,又称非常规能源,指传统能源之外的各种能源形式。指刚开始开发利用或正在积极研究、有待推广的能源,如太阳能、地热能、风能、海洋能、生物质能和核聚变能等。
复合新材料使用的历史可以追溯到古代。沿用的稻草增强粘土和已使用上的钢筋混凝土均由两种材料复合而成。20世纪40年代,因航空工业的需要,发展了玻璃纤维增强塑料(俗称玻璃钢),从此出现了复合材料这一名称。50年代以后,陆续发展了碳纤维、石墨纤维和硼纤维等高强度和高模量纤维。70年代出现了芳纶纤维和碳化硅纤维。这些高强度、高模量纤维能与合成树脂、碳、石墨、陶瓷、橡胶等非金属基体或铝、镁、钛等金属基体复合,构成各具特色的复合材料。分子量聚乙烯纤维的比强度在各种纤维中,尤其是它的抗化学试剂侵蚀性能和性能优良。它还具有优良的高频声纳透过性和耐海水腐蚀性,许多国家已用它来制造舰艇的高频声纳导流罩,大大提高了舰艇的探雷、扫雷能力,在国内思嘉新材料开发的复合新材料代表了国内的较高水平。除在军事领域,在汽车制造、船舶制造、医疗器械、体育运动器材等领域分子量聚乙烯纤维也有广阔的应用前景。该纤维一经问世就引起了世界发达国家的兴趣和重视。
超导材料
有些材料当温度下降至某一临界温度时,其电阻完全消失,这种现象称为超导电性,具有这种现象的材料称为超导材料。超导体的另外一个特征是:当电阻消失时,磁感应线将不能通过超导体,这种现象称为抗磁性。
一般金属(例如:铜)的电阻率随温度的下降而逐渐减小,当温度接近于0K时,其电阻达到某一值。而1919年荷兰科学家昂内斯用液氦冷却水银,当温度下降到4.2K(即-269℃)时,发现水银的电阻完全消失,
超导电性和抗磁性是超导体的两个重要特性。使超导体电阻为零的温度称为临界温度(TC)。超导材料研究的难题是突破“温度障碍”,即寻找高温超导材料。
能源材料主要有太阳能电池材料、储氢材料、固体氧化物电池材料等。
太阳能电池材料是新能源材料,IBM公司研制的多层复合太阳能电池,转换率高达40%。
氢是、的理想能源,氢的利用关键是氢的储存与运输,美国能源部在全部氢能研究经费中,大约有50%用于储氢技术。氢对一般材料会产生腐蚀,造成氢脆及其渗漏,在运输中也易爆炸,储氢材料的储氢方式是能与氢结合形成氢化物,当需要时加热放氢,放完后又可以继续充氢的材料。储氢材料多为金属化合物。如LaNi5H、Ti1.2Mn1.6H3等。
固体氧化物燃料电池的研究十分活跃,关键是电池材料,如固体电解质薄膜和电池阴极材料,还有质子交换膜型燃料电池用的有机质子交换膜等。
物化性能 纳米颗粒的熔点和晶化温度比常规粉末低得多,这是由于纳米颗粒的表面能高、活性大,熔化时消耗的能量少,如一般铅的熔点为600K,而20nm的铅微粒熔点低于288K;纳米金属微粒在低温下呈现电绝缘性;钠米微粒具有的吸光性,因此各种纳米微粒粉末几乎都呈黑色;纳米材料具有奇异的磁性,主要表现在不同粒径的纳米微粒具有不同的磁性能,当微粒的尺寸某一临界尺寸时,呈现出高的矫顽力,而低于某一尺寸时,矫顽力很小,例如,粒径为85nm的镍粒,矫顽力很高,而粒径小于15nm的镍微粒矫顽力接近于零;纳米颗粒具有大的比表面积,其表面化学活性远大于正常粉末,因此原来化学惰性的金属铂制成纳米微粒(铂黑)后却变为活性的催化剂。
扩散及烧结性能 纳米结构材料的扩散率是普通状态下晶格扩散率的1014~1020倍,是晶界扩散率的102~104倍,因此纳米结构材料可以在较低的温度下进行有效的掺杂,可以在较低的温度下使不混溶金属形成新的合金相。扩散能力提高的另一个结果是可以使纳米结构材料的烧结温度大大降低,因此在较低温度下烧结就能达到致密化的目的。
力学性能 纳米材料与普通材料相比,力学性能有显著的变化,一些材料的强度和硬度成倍地提高;纳米材料还表现出超塑性状态,即断裂前产生很大的伸长量。
新材料技术是按照人的意志,通过物理研究、 材料设计、材料加工、试验评价等一系列研究过程,创造出能满足各种需要的新型材料的技术。新材料按材料的属性划分,有金属材料、无机非金属材料(如陶瓷、砷化镓半导体等)、有机高分子材料、复合材料四大类。按材料的使用性能性能分,有结构材料和功能材料。结构材料主要是利用材料的力学和理化性能,以满足高强度、高刚度、高 硬度、耐高温、耐磨、耐蚀、抗辐照等性能要求。隐身材料能吸收电磁波或降低武器装备的红外辐射,使敌方探测系统难以发现, 新材料技术被称为“发明之母”和“产业粮食”。