镀件经过除锈清洗后产生的废水,一般是酸性废水。镀件电镀后清洗形成的废水主要含有微量金属元素,如铜、铬、镍、锌、镉和有机金属光亮剂等。
电镀企业在初步处理电镀污泥时,都需要将电镀废液中的各种重金属盐类转化为相应的氢氧化物并沉淀固化,因而一般电镀厂家在处理电镀废液时都加入了相关的还原剂、中和剂及絮凝剂等化学药品,导致电镀污泥中化学组分增多,各种重金属化合物在组分中分散而含量偏低。特别是某些电镀企业采用石灰或电石作为中和剂,在中和处理时通过化学反应产生大量石膏或氢氧化钙,更使电镀污泥的总量增大、重金属组分含量降低,以致进一步的无害化处理、分离和综合利用较为困难。刘燕等人经过实地调查发现,一般新处理产生的电镀污泥含水率很高,达75%~80%,铬、镍、铁、铜及锌的化合物含量一般约为0.5%~3%(以氧化物计),石膏(硫酸钙)含量为8%~10%,其他水溶性盐类及杂质含量在5%左右。
热化学处理技术(如焚烧、离子电弧及微波等)是在高温条件下对废物进行分解,使其中的某些剧毒成分毒性降低,实现快速、显著地减容,并对废物的有用成分加以利用。近年来,利用热化学处理技术实现对危险废物电镀污泥的预处理或安全处置正引起人们的重视。
有关电镀污泥热化学处理技术的研究中,以对在焚烧处理电镀污泥过程中重金属的迁移特性等问题的研究比较。Espinosa等人对电镀污泥在炉内焚烧过程的热特性及其中重金属的迁移规律进行了研究,发现焚烧能有效富集电镀污泥中的铬,灰渣中铬的残留率高达99%以上,而在焚烧过程中,绝大部分污泥组分以CO2、H2O、SO2等形态散失,因此减容减重效果非常明显,减重可达34%。Barros等人利用水泥回转窑对混合焚烧电镀污泥过程进行了研究,分析了添加氯化物(KCl、NaCl等)对电镀污泥中Cr2O3和NiO迁移规律的影响,认为氯化物对Cr2O3和NiO在焚烧灰渣中的残留情况几乎没有任何影响,焚烧过程中Cr2O3和NiO都能被有效地固化在焚烧残渣中。刘刚等人利用管式炉模拟焚烧炉研究电镀污泥的热处置特性时,分析了铬、铅、锌、铜等多种重金属的迁移特性,认为焚烧温度在700℃以下时,污泥中的水分、有机质和挥发分就能被很好地去除,且高温能有效抑制污泥中重金属的浸出,但这种抑制对各种重金属的影响各不相同,如镍是不挥发性重金属,在焚烧灰渣中的残留率为,铬在灰渣中的残留率也高达97%以上,而锌、铜、铅的析出率则随焚烧温度的升高而有不同程度的增大。
在离子电弧、微波等其他热化学处理研究方面,Ramachandran等人用直流等离子电弧在不同气氛下对电镀污泥进行处理,并对处理后的残渣及处理过程中产生的粉末进行了研究,认为此法在实现铜、铬等有价金属回收的同时可将残渣转化成稳定的惰性熔渣。Gan等人通过微波辐射对电镀污泥进行了和重金属固化实验,发现微波辐射处理对电镀污泥中重金属离子的固化效果显著,原因可能是在高温干燥与电磁波的共同作用下,有利于重金属离子同双极聚合分子之间发生强烈的相互作用而结合在一起,而经微波处理的电镀污泥具有粒度细、比表面积高、易结团等特性。
由于电镀污泥是电镀废水投加铁盐后调pH值及投加絮凝剂后发生沉淀的产物,故电镀污泥中一般含有大量的铁离子,尤其在含铬废水污泥中,采用适当的技术可使其变成复合铁氧体,电镀污泥中的铁离子以及其他多种金属离子被束缚在反尖晶石面型立方结构的四氧化三铁品格格点上,其晶体结构稳定,达到了消除二次污染的目的。
徐州市奎钢建材机械厂是一家生产水泥化工矿山机械配件的厂家,拥有雄厚的技术力量和大型铸钢能力(单件40吨以下)拥有大型立式车床7台套,2米到8米滚齿机7台套及其余大型加工设备80余台套,工艺装备,质量检测手段完善,具有较强的科研开发、产品设计和生产安装能力,我厂始终坚持质量的方针,按认证标准的要求进行生产、管理、设计、制作、服务。建立了一套从零件的加工到整机的出厂的质量管理体系,并对所有产品实行计算机辅助设计(CAD,3D),同时积极与科研单位合作,不断吸收借鉴技术,不断完善,产品的性、经济性和环保性。产品销往全国各地,部分产品出口哈萨克斯坦、越南.马来西亚,哥伦比亚等国家。