车牌识别系统在未来的整个智慧交通领域发展中将继续得到广泛应用,其中智慧出行领域应用车牌识别系统在车辆道路行驶中实施违章监控,而智慧停车领域则采用车牌识别系统在车辆停放过程中采集车辆信息。随着技术的不断创新和发展,车牌识别系统的识别准确率和鲁棒性将不断提高,为城市交通管理和公安安防等领域提供更加、准确的服务。
传统车牌识别模式通常采用基于特征的模式。这种模式的特点是通过预处理和特征提取的方式,获取车牌图像中的特征信息,再通过分类器对这些特征进行判定。传统模式需要人工设计特征提取器和分类器,因此识别准确率和鲁棒性受到很大的限制。传统模式的优点是运算速度较快,计算量相对较小。
随着智能道闸应用的不断普及,停车场的数据量也在不断增加,包括停车流量、客户满意度、车牌信息等多种数据类型。这些数据的挖掘和分析,不仅可以提供详细的车辆通行和停车消费等信息,还可以为停车场提供决策支撑,提高停车场的经营效益和管理水平。