励磁
一般我们把根据电磁感应原理使发电机转子形成旋转磁场的过程称为励磁。此外,为发电机等“利用电磁感应原理工作的电气设备”提供工作磁场也叫励磁 。有时,向发电机转子提供转子电源的装置也叫励磁。
随着电力建设的发展,中国电力系统行业已进入大网络、高电压、大机组的阶段。大容量机组运行时的稳定性对于整体电网的稳定性和安全至关重要。然而,影响发电机稳定性大的是电机励磁系统。励磁系统对于电网安全起到了非常重要的作用,它不仅是机组稳定运行的,也是整个电网中无功以及电压调节的杠杆。 [1]
主要作用
1、维持发电机端电压在给定值,当发电机负荷发生变化时,通过调节磁场的强弱来恒定机端电压。
凸极式转子结构示意图
凸极式转子结构示意图
2、合理分配并列运行机组之间的无功分配。
2、提高电力系统的稳定性,包括静态稳定性、暂态稳定性及动态稳定性。
传统计算机存储容量较小,面对大规模数据集的操作效率偏低。新一代计算机采用高配置处理器作为控制中心,CPU在结构功能方面有了很大的提升空间。中央处理器以运算器、控制器为主要装置,逐渐扩散为逻辑运算、寄存控制、程序编码、信号收发等多项功能。这些都加快了CPU调控性能的优化升级。 [5]
CPU总线
CPU总线是在计算机系统中快的总线,同时也是芯片组与主板的核心。人们通常把和CPU直接相连的局部总线叫做CPU总线或者称之为内部总线,将那些和各种通用的扩展槽相接的局部总线叫做系统总线或者是外部总线。在内部结构比较单一的CPU中,往往只设置一组数据传送的总线即CPU内部总线,用来将CPU内部的寄存器和算数逻辑运算部件等连接起来,因此也可以将这一类的总线称之为ALU总线。而部件内的总线,通过使用一组总线将各个芯片连接到一起,因此可以将其称为部件内总线,一般会包含地址线以及数据线这两组线路。系统总线指的是将系统内部的各个组成部分连接在一起的线路,是将系统的整体连接到一起的基础;而系统外的总线,是将计算机和其他的设备连接到一起的基础线路。
中央处理器强大的数据处理功有效提升了计算机的工作效率,在数据加工操作时,并不仅仅只是一项简单的操作,中央处理器的操作是建立在计算机使用人员下达的指令任务基础上,在执行指令任务过程中,实现用户输入的控制指令与CPU的相对应。随着我国信息技术的快速发展,计算机在人们生活、工作 以及企业办公自动化中得到广泛应用,其作为一种主控设备,为促进电子商务网络的发展起着促进作用,使 CPU 控制性能的升级进程得到很大提高。指令控制、实际控制、操作控制等就是计算机 CPU 技术应用作用表现。 [2]
(1)选择控制。集中处理模式的操作,是建立在具体程序指令的基础上实施,以此满足计算机使用者的需求,CPU 在操作过程中可以根据实际情况进行选择,满足用户的数据流程需求。 指令控制技术发挥的重要作用。根据用户的需求来拟定运算方式,使数据指令动作的有序制定得到良好维持。CPU在执行当中,程序各指令的实施是按照顺利完成,只有使其遵循一定顺序,才能计算机使用效果。CPU 主要是展开数据集自动化处理,其 是实现集中控制的关键,其核心就是指令控制操作。 [2]
(2)插入控制。CPU 对于操作控制信号的产生,主要是通过指令的功能来实现的,通过将指令发给相应部件,达到控制这些部件的目的。实现一条指令功能,主要是通过计算机中的部件执行一序列的操作来完成。较多的小控制元件是构建集中处理模式的关键,目的是为了更好的完成CPU数据处理操作。 [2]
(3)时间控制。将时间定时应用于各种操作中,就是所谓的时间控制。在执行某一指令时,应当在规定的时间内完成,CPU的指令是从高速缓冲存储器或存储器中取出,之后再进行指令译码操作,主要是在指令寄存器中实施,在这个过程中,需要注意严格控制程序时间。
虽然PLC所使用之阶梯图程式中往往使用到许多继电器、计时器与计数器等名称,但PLC内部并非实体上具有这些硬件,而是以内存与程式编程方式做逻辑控制编辑,并借由输出元件连接外部机械装置做实体控制。因此能大大减少控制器所需之硬件空间。实际上PLC执行阶梯图程式的运作方式是逐行的先将阶梯图程式码以扫描方式读入CPU 中并后执行控制运作。在整个的扫描过程包括三大步骤,“输入状态检查”、“程式执行”、“输出状态更新”说明如下:
步骤一“输入状态检查”:PLC检查输入端元件所连接之各点开关或传感器状态(1 或0 代表开或关),并将其状态写入内存中对应之位置Xn。步骤二“程式执行”:将阶梯图程式逐行取入CPU 中运算,若程式执行中需要输入接点状态,CPU直接自内存中查询取出。输出线圈之运算结果则存入内存中对应之位置,暂不反应至输出端Yn。步骤三“输出状态更新”:将步骤二中之输出状态更新至PLC输出部接点,并且重回步骤一。 此三步骤称为PLC之扫描周期,而完成所需的时间称为PLC 之反应时间,PLC 输入讯号之时间若小于此反应时间,则有误读的可能性。每次程式执行后与下一次程式执行前,输出与输入状态会被更新一次,因此称此种运作方式为输出输入端“程式结束再生”。
(1)强力式励磁调节器。早在50年代中期,前苏联提出了强力式励磁调节器,除 了采用发电机端电压偏差ΔUt外,还采用发电机频率偏差Δf及其一次微分和发电机定 子电流及其一次微分等辅助反馈变量。在设计上采用“双变量D域划分法”。这种调节 器具有在调节精度下稳定励磁、提高发电机动态与暂态运行稳定性、抑制系统事故 后的振荡等功能,在前苏联得到推广应用。但由于设计方法不方便,共同稳定域很小, 参数整定困难等原因,在国际上和我国均未普遍应用。 [2]
(2) 电力系统稳定器PSS。它是在PID调节器的基础上,附加发电机的转速偏差 Δω、功率偏差ΔPe、频率偏差Δf中的一种或两种信号的二阶校正环节作为附加控 制。其作用是,增加对电力系统机电振荡的阻尼,以增强电力系统的动态稳定性。有资 料说明,采用PSS可将系统极 限运行角提高到110°~120°。 以Δf(Δω) 为附加信号的 PSS控制器传递函数结构图如图3所示。
我国引进设备所采用的 PSS的传递函数结构图见图4。采用了WASH—OUT 滤波器,在任何情况下,直流分量附加到调节器控制回路中。两个放大因子KSS1和KSS2“加权”用计算机程序 计算。设定值取决于机组参数、机组运行点及网络阻抗,从而决定其相位和滞后以 及稳定信号的幅度,以求所有运行点都达到好的阻尼效应。
(3)线性优励磁控制LOEC。为了进一步改善电力系统小干扰稳定及动态品质, 70年代初,国际上一些学者提出了线性优控制方式LOEC。80年代清华大学对此进 行了研究,研制成功工业样机,经由天津电气传动研究所、武汉洪山电工研究所制造生产的产品,已在碧口、刘家峡、白山、红石等水电站的机组上投入运行。有资料说明, 结合实际计算,这种励磁调节方式,可将系统动态稳定极限角δm提高到127°。但是, 它是基于系统全状态量的优线性反馈的,要求状态量能实际测量,从而给实际应用带来了困难。而且将其应用于多机电力系统励磁控制设计时,不能得到分散的优控制规 律,只能得到次优的控制方案,这不能不是一种缺陷,在非线性系统中,一旦偏离了设计工况,优控制就不存在了。
(4)零动态多变量励磁控制ZDEOC。ZDEOC的设计原则是仅仅输出状态量的 动态品质在任何时刻都是优的,即系统输出状态量的动态偏差Y (t)在任何时候都 趋于零,即,当t≥0时,Y (t) =0。而对其发电机的其他状态,即内部状态,无须 苛求,只求稳定即可。这种调节规律系由清华大学提出,在电力自动化研究院电气控制 技术所生产SJ800微机励磁调节器上配置,已在动模上作了单机无穷大系统试验,证明 能有效改善远距离输电系统稳定性,现已在岩滩水电站300MW机组上投入运行。
非线性多变量励磁控制NEC
NEC在设计中,对于小干扰和大干扰,都采用电力系统的非线性模型。应用微 分几何方法对电力模型(可表示为一个标准的仿射非线性系统)进行线性化,寻找适 当的坐标变换及非线性状态反馈,使系统转化为一个完全可控的线性系统,由此求出线性 优控制,从而求得非线性控制。经变量代换,终得出非线性优控制规律NOEC。
清华大学用这种NEC的理论和方法设计并研究成功GEC-1型微机非线性励磁控 制器,它一举解决了电力系统小干扰与大干扰控制的统一性、控制对电网参数的鲁棒 性、分散优控制等三个关键问题,有利于提高输电系统的安全稳定水平。
GEC-1型微机非线性励磁控制器,从1994年11月起已经在丰满水电站一台容量为 85MW的水轮发电机组和10台容量为100~200MW的汽轮发电机上成功地运行。西北电网的稳定仿真计算表明,依靠这种控制器不仅抑制了西电东送所出现的弱阻尼振荡,而且还 提高了东电西送动态稳定极限。对三峡工程机组励磁方式的研究表明,采用NEC方式,在 各种运行方式下,都能提供很强的人工阻尼,在提高系统暂态和静态稳定方面,均优于目前 的所有PSS和LOEC。以单机对无穷大系统的为例,静态稳定极限比采用PID方式提高 35.7%,比采用PSS方式提高7.1%,比采用LOEC方式提高15.7%;暂态稳定极限比采用 PID方式提高38%,比采用PSS方式提高4.7%,比采用LOEC方式提高14.2%。