的电池生产消费带来了数目惊人的废电池,境问题也显现出来。电池经过无数次的充电放电之)电量将会逐渐减小,直至报废,所以必然会产生大量电池。如果对这些废旧锂离子电池不循环重复利离子电池中的电解液 LiCIO、LiBF、LiPF会泄露 铃声极材料中的钻和镍等有毒的金属氧化物也会进入生态...些物质都会对生态环境造成的危害,并影响到人类的健康。如六氟磷酸锂有强腐蚀性,遇水易分解产生HF,易与强氧化剂发生反应,燃烧产生PO,若采用简单掩埋的方法处理,必将对环境造成危害;难降解有机溶剂及其分解和水解产物,如DME(二甲氧基乙烷)、甲醇、甲酸等,这些有毒有害物质会对大气、水、土壤造成严重的污染并对生态系统产生危害。
随着2016年底我国废旧锂离子电池的大批量的出现,实际上在国内很快形成了梯次利用市场,2017年初开始一些小型企业将动力电池包拆解得到电池单体进行批发,作为移动光源如手电筒、五金工具及低速电动车的电源使用。2017 年开始至少有10 家以上的小型企业进行该经营活动。早期确定的废旧动力电池梯次利用方向,作为储能系统实现废旧动力电池梯次利用,还设有得到实质性的推广。
废旧锂离子电池的回收处理过程主要包括预处理、二次处理和深度处理。由于废旧电池中仍残留部分电量,所以预处理过程包括深度放电过程、破碎、物理分选;二次处理的目的在于实现正负极活性材料与基底的完全分离,常用热处理法、有机溶剂溶解法、碱液溶解法以及电解法等来实现二者的完全分离;深度处理主要包括浸出和分离提纯2个过程,提取出有价值的金属材料。按提取工艺分类,电池的回收方法主要可分为:干法回收、湿法回收和生物回收3大类技术。
当废旧锂离子电池被完全放电后,需要拆解电池的正极材料、负极材料、隔膜和外壳等。电池的拆解既可以用人工操作,也可以通过机械处理来完成。通常情况下,人工拆解主要用于实验室研究,拆解的工作量相对较小;机械拆解是借助冲击破碎机来拆解与粉碎电池,可以实现大规模的工业化处理,而且机械拆解所得的正极材料更纯净,其杂质含量相对较少,更方便后续的操作处理。
再生利用模式:通过拆解、分选、焚烧、浸出、溶解、除杂、萃取和结晶等物理、化学手段,将废旧锂电池中的镍、钴、锂等有价值的金属材料分离出来,再制成金属化合物或锂电池的原料,这是目前中国动力锂电池主要回收模式。
当锂电池性能(电池容量)往往只下降到原性能的 80%。在电池性能仍维持在 80%-20%时,退役的动力电池可以经过相关的检测评价依次用于低功率电动车、电网储能、家庭储能领域。而当电池性能下降至 20%时,可以对其进行报废处理。