沸石分子筛具有特的规整晶体结构,其中每一类都具有一定尺寸、形状的孔道结构,并具有较大比表面积。
大部分沸石分子筛表面具有较强的酸中心,同时晶孔内有强大的库仑场起极化作用。这些特性使它成为性能的催化剂。
多相催化反应是在固体催化剂上进行的,催化活性与催化剂的晶孔大小有关。沸石分子筛作为催化剂或催化剂载体时,催化反应的进行受到沸石分子筛晶孔大小的控制。晶孔和孔道的大小和形状都可以对催化反应起着选择性作用。在一般反应条件下沸石分子筛对反应方向起主导作用,呈现了择形催化性能,这一性能使沸石分子筛作为催化新材料具有强大生命力。
沸石分子筛材料的广泛应用(例如:吸附分离、离子交换、催化),是与其结构特点密不可分的。例如,吸附分离性能取决于分子筛的孔道和孔体积的大小;离子交换性能取决于分子筛中阳离子的数目、位置及其孔道的可通行性;催化过程中表现出的择形性与分子筛的孔道尺寸、走向相关,而催化反应中的中间产物以及后产品和分子筛的孔道维数或其笼结构相关。因此,分子筛的结构是研究分子筛材料的基本问题。
分子筛的骨架结构由初级结构单元进行有限或者无限的连接后而形成的。有限的结构单元,如次级结构单元通常是指由TO4四面体通过共同使用的氧原子,从而按照不同的连接方式组成的多元环结构,比较常见的环结构如四元环、五元环、六元环、双四元环和双六元环。现在所发现的为18种次级结构单元。例如4-4次级结构单元,它所代表的的是两个四元环,即双四元环。正如我们所熟知的A型分子筛,它就是通过SOD笼与双四元环之间进行连接从而形成了沸石分子筛。当然我们所说的SBU只是在理论意义上的拓扑单元,是为了更好的理解和解释沸石分子筛的结构,不能这样就认为是沸石分子筛晶化过程的真实物种。
初始凝胶的配比往往能够决定终产物的类型。初投料的反应物的不同会导致后的生成物的完全不同,如,阳离子不同可以导致分子筛产物的不同,钠离子容易导向LTA、CAN、FAU、GIS等分子筛骨架的生成;而钾离子则容易导向LTL、CHA、ERI等类型的分子筛骨架。即使初的反应物相同只是反应物含量有微少的差别也极有可能得到不同的物相,如碱度对分子筛合成体系的影响。另外当所有物料比例都相同,只是简单的使用不同的硅源也有可能导致分子筛晶体大小、形貌、甚至骨架类型的改变。当我们用相图来表述整个物料时,从中可以发现许多结构只能在一个特定的区域里得到。有时由于过于多的影响因素,只能选择一两个变量来作图。另外,投料时的加料顺序,人为操作对于分子筛的合成也是一个影响因素。 [5]
分子筛回收是一个涉及资源再利用和环境保护的重要过程。分子筛,特别是沸石分子筛,因其特的结构特性和广泛的应用领域,如吸附、离子交换和催化作用,在化工、石油、环保等行业中扮演着重要角色。
分子筛在使用过程中会逐渐失去活性或性能下降,导致其无法再满足使用要求。此时,如果直接废弃分子筛,不仅会浪费资源,还可能对环境造成污染。因此,对废旧分子筛进行回收再利用具有重要意义。