聚碳酸酯(Polycarbonate,简称PC)是一种综合性能非常的型热塑性工程塑料。我国PC行业在过去二十年经历了翻天覆地的变化,在需求、供给和技术端等都取得了长足进步。
需求端:国内PC消费量从2000年的约20万吨扩大至2019年的近250万吨,年均消费增速超过14%。
供给端:国内PC的产量则从2000年的不到0.1万吨扩大至2019年的接近120万吨,自给率从几乎完全依赖进口到目前接近50%。
Panlite SP系列ML-3500ZAH ,ML-3500ZEL 低光扩散; 耐紫外光性能,良好 LEDs; 照明漫射器; 照明应用
ML-3302ZHS, ML-3302ZLS ,ML-3305ZHS ,ML-3305ZLS ,ML-3310ZHS,ML-3500ZAL
Panlite ML系列ML-3500ZAH 低光扩散; 耐紫外光性能,良好 LEDs; 照明漫射器; 照明应用
所有材料均可溯源,随货可提供COA材质证明 ,SDS 物性表,MSDS 安全数据表 ,ROHS ,REACH等相关资料!
Panlite ML系列ML-3500ZAH ,ML-3500ZEL 低光扩散; 耐紫外光性能,良好 LEDs; 照明漫射器; 照明应用
所有材料均可溯源,随货可提供COA材质证明 ,SDS 物性表,MSDS 安全数据表 ,ROHS ,REACH等相关资料!
PC工业化生产的主流工艺包括界面缩聚工艺和熔融酯交换缩聚工艺(简称熔融缩聚工艺)两种。
PC的合成早于20世纪50年代末,分别由当时的拜耳公司(现科思创公司)和通用电气塑料公司(现沙特基础工业公司)实现工业化。60年代,熔融缩聚工艺在生产过程中的一些关键技术无法解决,规模小、质量差,而界面缩聚工艺的产品分子量可调,较易制得高分子量PC,装置规模容易放大,技术相对成熟,因此世界各大公司纷纷采用界面缩聚工艺生产PC。70至90年代,世界各地兴建的PC装置几乎都采用界面缩聚工艺。
进入90年代后期,熔融缩聚工艺在一些关键技术上取得了突破,产品质量大幅改善,同时由于全球对光气使用的限制,之后很多公司开始转向采用该技术路线生产PC。
界面缩聚工艺采用光气与双酚A在碱性氢氧化物水溶液和惰性有机溶剂存在下,通过界面缩聚反应合成PC。目前在国内,帝人、三菱瓦斯、鲁西化工、万华化学和沧州大化等均采用此工艺路线生产PC。
界面缩聚工艺的优点主要是易获得高分子量PC,特别是在合成其他高熔点特种PC时,不受高熔点困扰。界面缩聚工艺的缺点主要是使用了剧毒物质——光气,以及需采用复杂的后处理工艺。此外,还需进行溶剂的循环套用和废水处理。
熔融缩聚工艺采用碳酸二苯酯与双酚A在催化剂作用下通过熔融缩聚反应合成PC,副产苯酚。目前在国内,科思创、中石化三菱、浙铁大风、利华益维远、中蓝国塑、盛通聚源和甘宁石化等均采用此工艺路线生产PC。
熔融缩聚工艺的优点主要是聚合过程不使用光气,缺点主要是聚合过程为热力学控制,高粘度熔体对分散混合要求非常高,且较长的高温停留时间导致聚合物链段的分子结构规整度较差,较难生产高粘度产品且产品的耐热性能通常不如界面缩聚工艺制备的产品。
Panlite ML系列ML-3500ZAH ,ML-3500ZEL 低光扩散; 耐紫外光性能,良好 LEDs; 照明漫射器; 照明应用
所有材料均可溯源,随货可提供COA材质证明 ,SDS 物性表,MSDS 安全数据表 ,ROHS ,REACH等相关资料!
产品差异化中的差异化产品主要可以分为两类,一类是在双酚A型均聚PC的基础上进行后端改性,如提高表面电阻达到抗静电效果,改善阻燃效果等;另一类则需要在PC聚合的分子链段上进行改良,如为提高耐低温性能,通常引入含硅氧烷的分子链段,为提高耐热性能通常加入分子量更大的含苯环双酚结构与双酚A进行不同比例的共聚,为提高高剪切下的熔体强度,通常会引入三官能团或四官能团物质共聚为支化结构,为提高PC的折射率,则通常需摒弃双酚A结构,而采用其他的双酚或双醇进行共聚等等。
我国在共聚PC方面几乎完全依赖进口。2020年国内PC消费总量约250万t,其中接近95%为双酚A型均聚PC。国内共聚PC的市场容量在10万~15万t左右,且这部分基本都是的PC产品,具有的附加值。
未来我国PC产业要想改变目前“大而不强”的局面,发展共聚PC产品势在必行。目前,国内已经有多家公司和科研院所在进行共聚PC的聚合工艺开发,如硅氧烷共聚PC和支化PC已部分实现了国产化,相信未来必然还会有更多具备不同性能的共聚PC产品逐步实现国产化。
硅共聚PC以其良好的耐低温性能、耐候性能、阻燃性能等在5G、光伏领域将有良好的市场空间。