人脸检测:人脸检测在实际中主要用于人脸识别的预处理,即在图像中准确标定出人脸的位置和大小。人脸图像中包含的模式特征十分丰富,如直方图特征、颜色特征、模板特征、结构特征及Haar特征等。人脸检测就是把这其中有用的信息挑出来,并利用这些特征实现人脸检测。
人脸图像特征提取:人脸识别系统可使用的特征通常分为视觉特征、像素统计特征、人脸图像变换系数特征、人脸图像代数特征等。人脸特征提取就是针对人脸的某些特征进行的。人脸特征提取,也称人脸表征,它是对人脸进行特征建模的过程。人脸特征提取的方法归纳起来分为两大类:一种是基于知识的表征方法;另外一种是基于代数特征或统计学习的表征方法。
所谓自然性,是指该识别方式同人类(甚至其他生物)进行个体识别时所利用的生物特征相同。例如人脸识别,人类也是通过观察比较人脸区分和确认身份的,另外具有自然性的识别还有语音识别、体形识别等,而指纹识别、虹膜识别等都不具有自然性,因为人类或者其他生物并不通过此类生物特征区别个体。
人脸的外形很不稳定,人可以通过脸部的变化产生很多表情,而在不同观察角度,人脸的视觉图像也相差很大,另外,人脸识别还受光照条件(例如白天和夜晚,室内和室外等)、人脸的很多遮盖物(例如口罩、墨镜、头发、胡须等)、年龄等多方面因素的影响。
人脸识别门禁是基于的人脸识别技术,结合成熟的ID卡和指纹识别技术而推出的安全实用的门禁产品。产品采用分体式设计,人脸、指纹和ID卡信息的采集和生物信息识别及门禁控制内外分离,实用性高、安全可靠。系统采用网络信息加密传输,支持远程进行控制和管理,可广泛应用于银行、、公检法、智能楼宇等区域的门禁安全控制。
2D人脸识别的优势是实现的算法相对比较多,有一套比较成熟的流程,图像数据获取比较简单,只需一个普通摄像头即可,所以基于2D图像数据的人脸识别是目前的主流,在安防、监控、门禁、考勤、金融身份辅助认证、娱乐等多种场景中都有应用。